Artikel über das Programmieren in MQL5

icon

Lernen Sie die Sprache von Handelsstrategien MQL5 nach den hier veröffentlichten Artikeln, die meisten von denen Sie - die Mitglieder der Community - geschrieben haben. Alle Artikel sind in drei Kategorien aufgeteilt, damit man eine Antwort auf unterschiedliche Fragen des Programmierens schnell finden könnte: "Integration", "Tester", "Handelsstrategien" und vieles mehr.

Verfolgen Sie neue Veröffentlichungen und diskutieren Sie über diese im Forum!

Neuer Artikel
letzte | beste
Marktmathematik: Gewinn, Verlust und Kosten
Marktmathematik: Gewinn, Verlust und Kosten

Marktmathematik: Gewinn, Verlust und Kosten

In diesem Artikel zeige ich Ihnen, wie Sie den Gesamtgewinn oder -verlust eines Handels einschließlich Provision und Swap berechnen können. Ich werde das genaueste mathematische Modell zur Verfügung stellen und es verwenden, um den Code zu schreiben und ihn mit der Norm zu vergleichen. Außerdem werde ich versuchen, in die Hauptfunktion von MQL5 zur Berechnung des Gewinns einzudringen und alle erforderlichen Werte aus der Spezifikation zu ermitteln.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 26): Der Zukunft entgegen (I)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 26): Der Zukunft entgegen (I)

Heute werden wir unser Auftragssystem auf die nächste Stufe bringen. Aber vorher müssen wir noch einige Probleme lösen. Jetzt haben wir einige Fragen, die sich darauf beziehen, wie wir arbeiten wollen und welche Dinge wir während des Handelstages tun.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 25): Herstellen eines robusten Systems (II)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 25): Herstellen eines robusten Systems (II)

In diesem Artikel werden wir den letzten Schritt zu einem schnellen EA machen. Machen Sie sich also auf eine längere Lektüre gefasst. Um unseren Expert Advisor zuverlässig zu machen, werden wir zunächst alles aus dem Code entfernen, was nicht Teil des Handelssystems ist.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 24): Herstellen eines robusten Systems (I)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 24): Herstellen eines robusten Systems (I)

In diesem Artikel werden wir das System zuverlässiger machen, um eine robuste und sichere Nutzung zu gewährleisten. Eine der Möglichkeiten, die gewünschte Robustheit zu erreichen, besteht darin, den Code so oft wie möglich wiederzuverwenden, damit er ständig in verschiedenen Fällen getestet wird. Aber das ist nur eine der Möglichkeiten. Eine andere Möglichkeit ist die Verwendung von OOP.
Algorithmen zur Populationsoptimierung
Algorithmen zur Populationsoptimierung

Algorithmen zur Populationsoptimierung

Dies ist ein einführender Artikel über die Klassifizierung von Optimierungsalgorithmen (OA). In dem Artikel wird versucht, einen Prüfstand (eine Reihe von Funktionen) zu erstellen, der zum Vergleich von OAs und vielleicht zur Ermittlung des universellsten Algorithmus unter allen bekannten Algorithmen verwendet werden soll.
preview
Risiko- und Kapitalmanagement durch Expert Advisor

Risiko- und Kapitalmanagement durch Expert Advisor

In diesem Artikel geht es darum, was Sie in einem Backtest-Bericht nicht sehen können, was Sie erwarten sollten, wenn Sie automatisierte Handelssoftware verwenden, wie Sie Ihr Geld verwalten, wenn Sie Expert Advisors verwenden, und wie Sie einen erheblichen Verlust ausgleichen können, um in der Handelsaktivität zu bleiben, wenn Sie automatisierte Verfahren verwenden.
preview
DoEasy. Steuerung (Teil 14): Neuer Algorithmus zur Benennung von grafischen Elementen. Fortsetzung der Arbeit am TabControl WinForms Objekt

DoEasy. Steuerung (Teil 14): Neuer Algorithmus zur Benennung von grafischen Elementen. Fortsetzung der Arbeit am TabControl WinForms Objekt

In diesem Artikel werde ich einen neuen Algorithmus für die Benennung aller grafischen Elemente erstellen, die für die Erstellung von nutzerdefinierten Grafiken gedacht sind, sowie die Entwicklung des TabControl WinForms Objekts fortsetzen.
preview
Neuronale Netze leicht gemacht (Teil 23): Aufbau eines Tools für Transfer Learning

Neuronale Netze leicht gemacht (Teil 23): Aufbau eines Tools für Transfer Learning

In dieser Artikelserie haben wir bereits mehr als einmal über Transfer Learning berichtet. In diesem Artikel schlage ich vor, diese Lücke zu schließen und einen genaueren Blick auf Transfer Learning zu werfen.
preview
DoEasy. Steuerung (Teil 13): Optimierung der Interaktion von WinForms-Objekten mit der Maus, Beginn der Entwicklung des WinForms-Objekts TabControl

DoEasy. Steuerung (Teil 13): Optimierung der Interaktion von WinForms-Objekten mit der Maus, Beginn der Entwicklung des WinForms-Objekts TabControl

In diesem Artikel werde ich den Umgang mit dem Aussehen von WinForms-Objekte nach dem Bewegen des Mauszeigers weg von dem Objekt, sowie die Entwicklung der TabControl WinForms-Objekt korrigieren und optimieren.
Der Indikator CCI: Drei Transformationsschritte
Der Indikator CCI: Drei Transformationsschritte

Der Indikator CCI: Drei Transformationsschritte

In diesem Artikel werde ich zusätzliche Änderungen am CCI vornehmen, die die eigentliche Logik dieses Indikators betreffen. Außerdem können wir sie im Hauptfenster des Charts sehen.
preview
Neuronale Netze leicht gemacht (Teil 22): Unüberwachtes Lernen von rekurrenten Modellen

Neuronale Netze leicht gemacht (Teil 22): Unüberwachtes Lernen von rekurrenten Modellen

Wir untersuchen weiterhin Modelle und Algorithmen für unüberwachtes Lernen. Diesmal schlage ich vor, dass wir die Eigenschaften von AutoAutoencodern bei der Anwendung auf das Training rekurrenter Modelle diskutieren.
preview
DoEasy. Steuerung (Teil 12): WinForms-Objekte Basislistenobjekt, ListBox und ButtonListBox

DoEasy. Steuerung (Teil 12): WinForms-Objekte Basislistenobjekt, ListBox und ButtonListBox

In diesem Artikel werde ich das Basisobjekt der WinForms-Objektlisten sowie die beiden neuen Objekte erstellen: ListBox und ButtonListBox.
preview
Neuronale Netze leicht gemacht (Teil 21): Variierter Autoencoder (VAE)

Neuronale Netze leicht gemacht (Teil 21): Variierter Autoencoder (VAE)

Im letzten Artikel haben wir uns mit dem Algorithmus des Autoencoders vertraut gemacht. Wie jeder andere Algorithmus hat auch dieser seine Vor- und Nachteile. In seiner ursprünglichen Implementierung wird der Autoencoder verwendet, um die Objekte so weit wie möglich von der Trainingsstichprobe zu trennen. Dieses Mal werden wir darüber sprechen, wie man mit einigen ihrer Nachteile umgehen kann.
preview
DoEasy. Steuerung (Teil 11): WinForms Objekte — Gruppen, das WinForms-Objekt CheckedListBox

DoEasy. Steuerung (Teil 11): WinForms Objekte — Gruppen, das WinForms-Objekt CheckedListBox

Der Artikel behandelt die Gruppierung von WinForms-Objekten und die Erstellung des Listenobjekts CheckBox-Objekte.
preview
Experimente mit neuronalen Netzen (Teil 2): Intelligente Optimierung neuronaler Netze

Experimente mit neuronalen Netzen (Teil 2): Intelligente Optimierung neuronaler Netze

In diesem Artikel werde ich mit Hilfe von Experimenten und unkonventionellen Ansätzen ein profitables Handelssystem entwickeln und prüfen, ob neuronale Netze für Händler eine Hilfe sein können. Der MetaTrader 5 als ein autarkes Tool für den Einsatz neuronaler Netze im Handel.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 23): Neues Auftragssystems (VI)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 23): Neues Auftragssystems (VI)

Wir werden das Auftragssystem flexibler gestalten. Hier werden wir Änderungen am Code in Erwägung ziehen, die ihn flexibler machen, sodass wir die Positionsstopp-Levels viel schneller ändern können.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 22): Neues Auftragssystems (V)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 22): Neues Auftragssystems (V)

Heute werden wir die Entwicklung des neuen Auftragssystems fortsetzen. Es ist nicht einfach, ein neues System einzuführen, da wir häufig auf Probleme stoßen, die den Prozess erheblich erschweren. Wenn diese Probleme auftreten, müssen wir innehalten und die Richtung, in die wir uns bewegen, neu analysieren.
preview
Matrix- und Vektoroperationen in MQL5

Matrix- und Vektoroperationen in MQL5

Matrizen und Vektoren wurden in MQL5 für effiziente Operationen mit mathematischen Berechnungen eingeführt. Die neuen Typen bieten integrierte Methoden zur Erstellung von prägnantem und verständlichem Code, der der mathematischen Notation nahe kommt. Arrays bieten umfangreiche Möglichkeiten, aber es gibt viele Fälle, in denen Matrizen viel effizienter sind.
preview
Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 03): Shannonsche Entropie

Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 03): Shannonsche Entropie

Der Händler von heute ist ein Philomath, der fast immer (entweder bewusst oder unbewusst...) nach neuen Ideen sucht, sie ausprobiert, sich entscheidet, sie zu modifizieren oder zu verwerfen; ein explorativer Prozess, der einiges an Sorgfalt kosten sollte. Diese Artikelserie wird vorschlagen, dass der MQL5-Assistent eine Hauptstütze für Händler sein sollte.
preview
Neuronale Netze leicht gemacht (Teil 20): Autoencoder

Neuronale Netze leicht gemacht (Teil 20): Autoencoder

Wir untersuchen weiterhin Modelle und Algorithmen für unüberwachtes Lernen. Einige Leser haben vielleicht Fragen zur Relevanz der jüngsten Veröffentlichungen zum Thema neuronale Netze. In diesem neuen Artikel befassen wir uns wieder mit neuronalen Netzen.
preview
DoEasy. Steuerung (Teil 10): WinForms-Objekte - Animieren der Nutzeroberfläche

DoEasy. Steuerung (Teil 10): WinForms-Objekte - Animieren der Nutzeroberfläche

Nun ist es an der Zeit, die grafische Oberfläche zu animieren, indem die Funktionsweise für die Interaktion von Objekten mit Nutzern und Objekten implementiert wird. Die neue Funktionsweise wird auch notwendig sein, damit komplexere Objekte korrekt funktionieren.
preview
Das Preisbewegungsmodell und seine wichtigsten Bestimmungen (Teil 2): Probabilistische Preisfeldentwicklungsgleichung und das Auftreten des beobachteten Random Walk

Das Preisbewegungsmodell und seine wichtigsten Bestimmungen (Teil 2): Probabilistische Preisfeldentwicklungsgleichung und das Auftreten des beobachteten Random Walk

Der Artikel befasst sich mit der probabilistischen Preisfeldentwicklungsgleichung und dem Kriterium der bevorstehenden Preisspitzen. Sie zeigt auch das Wesen der Preiswerte auf den Charts und den Mechanismus für das Auftreten eines Random Walk dieser Werte.
preview
Lernen Sie, wie man ein Handelssystem mit dem Awesome Oscillator entwickelt

Lernen Sie, wie man ein Handelssystem mit dem Awesome Oscillator entwickelt

In diesem neuen Artikel unserer Serie werden wir ein neues technisches Instrument kennenlernen, das für unseren Handel nützlich sein kann: den Indikator Awesome Oscillator (AO). Wir werden lernen, wie man mit diesem Indikator ein Handelssystem entwickeln kann.
preview
Der Indikator CCI: Upgrade und neue Funktionen

Der Indikator CCI: Upgrade und neue Funktionen

In diesem Artikel werde ich mich mit der Möglichkeit befassen, den CCI-Indikator zu verbessern. Außerdem werde ich eine Änderung des Indikators vorstellen.
preview
Erfahren Sie, wie Sie ein Handelssystem anhand des Relative Vigor Index entwickeln können

Erfahren Sie, wie Sie ein Handelssystem anhand des Relative Vigor Index entwickeln können

Ein neuer Artikel in unserer Serie darüber, wie man ein Handelssystem anhand eines beliebten technischen Indikators entwickelt. In diesem Artikel werden wir lernen, wie man das mit Hilfe des Relativen Vigot-Index-Indikators tun kann.
preview
DoEasy. Kontrollen (Teil 9): Neuanordnung von WinForms-Objektmethoden, Steuerung von RadioButton und Steuerungen

DoEasy. Kontrollen (Teil 9): Neuanordnung von WinForms-Objektmethoden, Steuerung von RadioButton und Steuerungen

In diesem Artikel werde ich die Namen der Methoden der WinForms-Objektklasse festlegen und WinForms-Objekte Button und RadioButton erstellen.
preview
Neuronale Netze leicht gemacht (Teil 19): Assoziationsregeln mit MQL5

Neuronale Netze leicht gemacht (Teil 19): Assoziationsregeln mit MQL5

Wir fahren mit der Besprechung von Assoziationsregeln fort. Im vorigen Artikel haben wir den theoretischen Aspekt dieser Art von Problemen erörtert. In diesem Artikel werde ich die Implementierung der FP Growth-Methode mit MQL5 zeigen. Außerdem werden wir die implementierte Lösung anhand realer Daten testen.
preview
Lernen Sie, wie man ein Handelssystem mit dem DeMarker entwickelt

Lernen Sie, wie man ein Handelssystem mit dem DeMarker entwickelt

Hier ist ein neuer Artikel in unserer Serie darüber, wie man ein Handelssystem anhand der beliebtesten technischen Indikatoren entwickelt. In diesem Artikel stellen wir Ihnen vor, wie Sie ein Handelssystem mit dem Indikator DeMarker erstellen können.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 21): Neues Auftragssystem (IV)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 21): Neues Auftragssystem (IV)

Schlussendlich wird das visuelle System in Betrieb genommen, obwohl es noch nicht vollständig ist. Hier finden die wichtigsten, gemachten Änderungen ein Ende. Es wird eine ganze Reihe weiterer geben, aber sie sind alle notwendig. Nun, die ganze Arbeit wird recht interessant sein.
preview
Lernen Sie, wie man ein Handelssystem mit dem VIDYA entwickelt

Lernen Sie, wie man ein Handelssystem mit dem VIDYA entwickelt

Willkommen zu einem neuen Artikel aus unserer Serie über das Lernen, wie man ein Handelssystem durch die beliebtesten technischen Indikatoren zu entwerfen, in diesem Artikel werden wir über ein neues technisches Werkzeug lernen und lernen, wie man ein Handelssystem durch Variable Index Dynamic Average (VIDYA) zu entwerfen.
preview
Datenwissenschaft und maschinelles Lernen — Neuronales Netzwerk (Teil 02): Entwurf von Feed Forward NN-Architekturen

Datenwissenschaft und maschinelles Lernen — Neuronales Netzwerk (Teil 02): Entwurf von Feed Forward NN-Architekturen

Bevor wir fertig sind, müssen wir noch einige kleinere Dinge im Zusammenhang mit dem neuronalen Feed-Forward-Netz behandeln, unter anderem den Entwurf. Sehen wir uns an, wie wir ein flexibles neuronales Netz für unsere Eingaben, die Anzahl der verborgenen Schichten und die Knoten für jedes Netz aufbauen und gestalten können.
preview
Neuronale Netze leicht gemacht (Teil 18): Assoziationsregeln

Neuronale Netze leicht gemacht (Teil 18): Assoziationsregeln

Als Fortsetzung dieser Artikelserie betrachten wir eine andere Art von Problemen innerhalb der Methoden des unüberwachten Lernens: die Ermittlung von Assoziationsregeln. Dieser Problemtyp wurde zuerst im Einzelhandel, insbesondere in Supermärkten, zur Analyse von Warenkörben eingesetzt. In diesem Artikel werden wir über die Anwendbarkeit solcher Algorithmen im Handel sprechen.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 20): Neues Auftragssystem (III)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 20): Neues Auftragssystem (III)

Wir arbeiten weiter an der Umsetzung des neuen Auftragssystems. Die Erstellung eines solchen Systems erfordert eine gute Beherrschung von MQL5 sowie ein Verständnis dafür, wie die MetaTrader 5-Plattform tatsächlich funktioniert und welche Ressourcen sie bietet.
preview
Lernen Sie, wie man ein Handelssystem mit Bulls Power entwirft

Lernen Sie, wie man ein Handelssystem mit Bulls Power entwirft

Willkommen zu einem neuen Artikel in unserer Serie über das Lernen, wie man ein Handelssystem durch die beliebtesten technischen Indikator zu entwerfen, wie wir in diesem Artikel über einen neuen technischen Indikator lernen und wie wir ein Handelssystem durch sie zu entwerfen und dieser Indikator ist der Bulls Power-Indikator.
preview
Lernen Sie, wie man ein Handelssystem mit Bears Power entwirft

Lernen Sie, wie man ein Handelssystem mit Bears Power entwirft

Willkommen zu einem neuen Artikel in unserer Serie über das Lernen, wie man ein Handelssystem durch die beliebtesten technischen Indikator hier ist ein neuer Artikel über das Lernen, wie man ein Handelssystem von Bears Power technischen Indikator zu entwerfen.
preview
Datenwissenschaft und maschinelles Lernen - Neuronales Netzwerk (Teil 01): Entmystifizierte Feed Forward Neurale Netzwerke

Datenwissenschaft und maschinelles Lernen - Neuronales Netzwerk (Teil 01): Entmystifizierte Feed Forward Neurale Netzwerke

Viele Menschen lieben sie, aber nur wenige verstehen die gesamte Funktionsweise neuronaler Netze. In diesem Artikel werde ich versuchen, alles, was hinter den verschlossenen Türen einer mehrschichtigen Feed-Forward-Wahrnehmung vor sich geht, in einfacher Sprache zu erklären.
preview
Metamodelle für maschinelles Lernen und Handel: Ursprünglicher Zeitpunkt der Handelsaufträge

Metamodelle für maschinelles Lernen und Handel: Ursprünglicher Zeitpunkt der Handelsaufträge

Metamodelle im maschinellen Lernen: Automatische Erstellung von Handelssystemen mit wenig oder gar keinem menschlichen Eingriff — Das Modell entscheidet selbständig, wann und wie es handelt.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 19): Neues Auftragssystem (II)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 19): Neues Auftragssystem (II)

In diesem Artikel werden wir ein grafisches Ordnungssystem vom Typ „Schau, was passiert“ entwickeln. Bitte beachten Sie, dass wir dieses Mal nicht bei Null anfangen, sondern das bestehende System modifizieren, indem wir weitere Objekte und Ereignisse in den Chart des von uns gehandelten Vermögenswerts einfügen.
preview
Lernen Sie, wie man ein Handelssystem mit dem Force Index entwirft

Lernen Sie, wie man ein Handelssystem mit dem Force Index entwirft

Hier ist ein neuer Artikel aus unserer Serie darüber, wie man ein Handelssystem basierend auf den beliebtesten technischen Indikatoren entwirft. In diesem Artikel lernen wir einen neuen technischen Indikator kennen und erfahren, wie man ein Handelssystem mit dem Force Index-Indikator erstellt.
preview
Komplexe Indikatoren mit Objekten vereinfachen

Komplexe Indikatoren mit Objekten vereinfachen

In diesem Artikel wird eine Methode zur Erstellung komplexer Indikatoren vorgestellt, bei der gleichzeitig die Probleme vermieden werden, die bei der Arbeit mit mehreren Flächen, Puffern und/oder der Kombination von Daten aus mehreren Quellen auftreten.