Dmitriy Gizlyk / Perfil
- Informações
11+ anos
experiência
|
0
produtos
|
0
versão demo
|
134
trabalhos
|
0
sinais
|
0
assinantes
|

Continuamos o tópico de busca de regras de associação. No artigo anterior, consideramos os aspectos teóricos desse tipo de problema. No artigo de hoje, ensinarei a implementação do método FP-Growth usando MQL5. Também vamos testá-la com dados reais.

Como continuação desta série, gostaria de apresentar a vocês outro tipo de tarefa dos métodos de aprendizado não supervisionado, em particular a busca de regras de associação. Este tipo de tarefa foi usado pela primeira vez no varejo para analisar cestas de compras. Neste artigo falaremos sobre as possibilidades de utilização de tais algoritmos no trading.

Continuamos a estudar modelos de inteligência artificial, em particular, algoritmos de aprendizado não supervisionados. Já nos encontramos com um dos algoritmos de agrupamento. E neste artigo quero compartilhar com vocês outra maneira de resolver os problemas de redução de dimensionalidade.

No artigo anterior, construímos uma classe para agrupamento de dados. Hoje eu gostaria de compartilhar com vocês as formas mediante as quais os resultados podem ser usados para resolver problemas práticos de negociação.

Continuamos a estudar o método de agrupamento. Neste artigo, criaremos uma nova classe CKmeans para implementar um dos métodos de agrupamento k-médias mais comuns. Com base nos resultados dos testes, podemos concluir que o modelo é capaz de identificar cerca de 500 padrões.

Devo confessar que já se passou mais de um ano desde que o último artigo foi publicado. Em um período tão longo como esse, é possível reconsiderar muitas coisas, desenvolver novas abordagens. E neste novo artigo, gostaria de me afastar um pouco do método de aprendizado supervisionado usado anteriormente, e sugerir um pouco de mergulho nos algoritmos de aprendizado não supervisionado. E, em particular, desejaria analisar um dos algoritmos de agrupamento, o k-médias (k-means).

No artigo anterior, começamos a examinar métodos para melhorar a qualidade do treinamento da rede neural. Neste artigo, proponho continuar este tópico e considerar uma outra abordagem, em particular a de normalização de dados em lote.


Como a próxima etapa no estudo das redes neurais, eu sugiro considerar os métodos de aumentar a convergência durante o treinamento da rede neural. Existem vários desses métodos. Neste artigo, nós consideraremos um deles intitulado Dropout.

Talvez um dos modelos mais avançados entre as redes neurais de linguagem atualmente existentes seja a GPT-3, cuja variante máxima contém 175 bilhões de parâmetros. Claro, nós não vamos criar tal monstro em nossos PCs domésticos. No entanto, nós podemos ver quais soluções arquitetônicas podem ser usadas em nosso trabalho e como nós podemos nos beneficiar delas.

Nós já consideramos anteriormente o mecanismo de self-attention (autoatenção) em redes neurais. Na prática, as arquiteturas de rede neural modernas usam várias threads de self-attention paralelas para encontrar várias dependências entre os elementos de uma sequência. Vamos considerar a implementação de tal abordagem e avaliar seu impacto no desempenho geral da rede.

Nós já percorremos um longo caminho e o código em nossa biblioteca está se tornando cada vez maior. Isso torna difícil controlar todas as conexões e dependências. Portanto, eu sugiro criar uma documentação para o código criado anteriormente e mantê-lo atualizado a cada nova etapa. A documentação devidamente preparada nos ajudará a ver a integridade do nosso trabalho.

Nos artigos anteriores, nós já testamos várias opções para organizar as redes neurais. Nós também estudamos as redes convolucionais emprestadas dos algoritmos de processamento de imagem. Neste artigo, eu sugiro estudarmos os Mecanismos de Atenção, cujo surgimento deu impulso ao desenvolvimento dos modelos de linguagem.

Nos artigos anteriores, nós usamos o gradiente descendente estocástico para treinar uma rede neural usando a mesma taxa de aprendizado para todos os neurônios da rede. Neste artigo, eu proponho olhar para os métodos de aprendizagem adaptativos que permitem a mudança da taxa de aprendizagem para cada neurônio. Nós também consideraremos os prós e os contras dessa abordagem.

Anteriormente, nós consideramos vários tipos de redes neurais junto com suas implementações. Em todos os casos, as redes neurais foram treinadas usando o método gradiente descendente, para o qual nós precisamos escolher uma taxa de aprendizado. Neste artigo, eu quero mostrar a importância de uma taxa corretamente selecionada e o seu impacto no treinamento da rede neural, usando exemplos.

Discutimos anteriormente alguns tipos de implementações da rede neural. Nas redes consideradas, as mesmas operações são repetidas para cada neurônio. Uma etapa lógica adicional é utilizar os recursos da computação multithread (paralelismo em nível de threads) fornecidos pela tecnologia moderna em um esforço para acelerar o processo de aprendizagem da rede neural. Uma das possíveis implementações é descrita neste artigo.


Nós continuamos estudando o mundo das redes neurais. Neste artigo, nós analisaremos outro tipo de rede neural, as redes recorrentes. Este tipo de rede foi proposto para uso com as séries temporais, que são representadas na plataforma de negociação MetaTrader 5 por meio do gráfico de preços.
