Dmitriy Gizlyk
Dmitriy Gizlyk
4.4 (49)
  • Informações
11+ anos
experiência
0
produtos
0
versão demo
134
trabalhos
0
sinais
0
assinantes
Programação profissional de qualquer complexidade para MT4, MT5, C#.
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (Окончание)
Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (Окончание)

Продолжаем работу по реализации алгоритмов мультимодального агента для финансовой торговли FinAgent, предназначенного для анализа мультимодальных данных рыночной динамики и исторических торговых паттернов.

Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (FinAgent)
Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (FinAgent)

Предлагаем познакомиться с фреймворком мультимодального агента для финансовой торговли FinAgent, который предназначен для анализа данных разных типов, отражающих рыночную динамику и исторические торговые паттерны.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Агент с многоуровневой памятью (Окончание)
Нейросети в трейдинге: Агент с многоуровневой памятью (Окончание)

Продолжаем начатую работу по созданию фреймворка FinMem, который использует подходы многоуровневой памяти, имитирующие когнитивные процессы человека. Это позволяет модели не только эффективно обрабатывать сложные финансовые данные, но и адаптироваться к новым сигналам, значительно повышая точность и результативность инвестиционных решений в условиях динамично изменяющихся рынков.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Агент с многоуровневой памятью
Нейросети в трейдинге: Агент с многоуровневой памятью

Подходы многоуровневой памяти, имитирующие когнитивные процессы человека, позволяют обрабатывать сложные финансовые данные и адаптироваться к новым сигналам, что способствует повышению эффективности инвестиционных решений в условиях динамичных рынков.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Модели с использованием вейвлет-преобразования и многозадачного внимания (Окончание)
Нейросети в трейдинге: Модели с использованием вейвлет-преобразования и многозадачного внимания (Окончание)

В предыдущей статье мы рассмотрели теоретические основы и приступили к реализации подходов фреймворка Multitask-Stockformer, объединяющего вейвлет-преобразование и многозадачную модель Self-Attention. Продолжаем реализацию алгоритмов указанного фреймворка и оценим их эффективность на реальных исторических данных.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Модели с использованием вейвлет-преобразовании и многозадачного внимания
Нейросети в трейдинге: Модели с использованием вейвлет-преобразовании и многозадачного внимания

Предлагаем познакомиться с фреймворком объединяющим вейвлет-преобразование и многозадачную модель Self-Attention, направленную на повышение отзывчивости и точности прогнозирования в условиях нестабильности рынка. Вейвлет-преобразование позволяет разложить доходность активов на высокие и низкие частоты, тщательно фиксируя долгосрочные рыночные тенденции и краткосрочные колебания.

Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (Окончание)
Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (Окончание)

Продолжаем рассмотрение гибридной торговой системы StockFormer, которая объединяет предиктивное кодирование и алгоритмы обучения с подкреплением для анализа финансовых временных рядов. Основой системы служат три ветви Transformer с механизмом Diversified Multi-Head Attention (DMH-Attn), позволяющим выявлять сложные паттерны и взаимосвязи между активами. Ранее мы познакомились с теоретическими аспектами фреймворка и реализовали механизмы DMH-Attn, а сегодня поговорим об архитектуре моделей и их обучении.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (StockFormer)
Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (StockFormer)

Предлагаем познакомиться с гибридной торговой системой StockFormer, которая объединят предиктивное кодирование и алгоритмы обучения с подкреплением (RL). Во фреймворке используются 3 ветви Transformer с интегрированным механизмом Diversified Multi-Head Attention (DMH-Attn), который улучшает ванильный модуль внимания за счет многоголового блока Feed-Forward, что позволяет захватывать разнообразные паттерны временных рядов в разных подпространствах.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (Окончание)
Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (Окончание)

В предыдущей статье мы познакомились с мультиагентным адаптивным фреймворком MASAAT, который использует ансамбль агентов для перекрестного анализа мультимодального временного ряда в разных масштабах представления данных. И сегодня мы доведем до логического завершения начатую ранее работу по реализации подходов данного фреймворка средствами MQL5.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (MASAAT)
Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (MASAAT)

Предлагаем познакомиться с мультиагентной адаптивной структурой оптимизации финансового портфеля (MASAAT), которая объединяет механизмы внимания и анализ временных рядов. MASAAT формирует множество агентов, которые анализируют ценовые ряды и направленные изменения, позволяя выявлять значимые колебания цен активов на различных уровнях детализации.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Мультиагентная адаптивная модель (Окончание)
Нейросети в трейдинге: Мультиагентная адаптивная модель (Окончание)

В предыдущей статье мы познакомились с мультиагентным адаптивным фреймворком MASA, который объединяет подходы обучения с подкреплением и адаптивные стратегии, обеспечивая гармоничный баланс между доходностью и рисками в турбулентных рыночных условиях. Нами был построен функционал отдельных агентов данного фреймворка, и в этой статье мы продолжим начатую работу, доведя её до логического завершения.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Мультиагентная адаптивная модель (MASA)
Нейросети в трейдинге: Мультиагентная адаптивная модель (MASA)

Предлагаю познакомиться с мультиагентным адаптивным фреймворком MASA, который объединяет обучение с подкреплением и адаптивные стратегии, обеспечивая гармоничный баланс между доходностью и управлением рисками в турбулентных рыночных условиях.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (Окончание)
Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (Окончание)

В предыдущей работе мы рассмотрели теоретические аспекты фреймворка PSformer, который включает две основные инновации в архитектуру классического Transformer: механизм совместного использования параметров (Parameter Shared — PS) и внимание к пространственно-временным сегментам (SegAtt). И в данной статье мы продолжаем начатую работу по реализации предложенных подходов средствами MQL5.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (PSformer)
Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (PSformer)

Предлагаем познакомиться с новым фреймворком PSformer, который адаптирует архитектуру ванильного Transformer для решения задач прогнозирования многомерных временных рядов. В основе фреймворка лежат две ключевые инновации: механизм совместного использования параметров (PS) и внимание к пространственно-временным сегментам (SegAtt).

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (Окончание)
Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (Окончание)

SAMformer предлагает решение ключевых проблем Transformer в долгосрочном прогнозировании временных рядов, включая сложность обучения и слабое обобщение на малых выборках. Его неглубокая архитектура и оптимизация с учетом резкости обеспечивают избегание плохих локальных минимумов. В данной статье мы продолжим реализацию подходов с использованием MQL5 и оценим их практическую ценность.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (SAMformer)
Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (SAMformer)

Обучение моделей Transformer требует больших объемов данных и часто затруднено из-за слабой способности моделей к обобщению на малых выборках. Фреймворк SAMformer помогает решить эту проблему, избегая плохих локальных минимумов. И повышает эффективность моделей даже на ограниченных обучающих выборках.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Оптимизация Transformer для прогнозирования временных рядов (LSEAttention)
Нейросети в трейдинге: Оптимизация Transformer для прогнозирования временных рядов (LSEAttention)

Фреймворк LSEAttention предлагает пути совершенствования архитектуры Transformer, и был разработан специально для долгосрочного прогнозирования многомерных временных рядов. Предложенные авторами метода подходы позволяют решить проблемы энтропийного коллапса и нестабильности обучения, характерные для ванильного Transformer.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Гиперболическая модель латентной диффузии (Окончание)
Нейросети в трейдинге: Гиперболическая модель латентной диффузии (Окончание)

Применение анизотропных диффузионных процессов для кодирования исходных данных в гиперболическом латентном пространстве, как это предложено в фреймворке HypDIff, способствует сохранению топологических особенностей текущей рыночной ситуации, и повышает качество её анализа. В предыдущей статье мы начали реализацию предложенных подходов средствами MQL5. И сегодня продолжим начатую работу, доведя ее до логического завершения.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Гиперболическая модель латентной диффузии (HypDiff)
Нейросети в трейдинге: Гиперболическая модель латентной диффузии (HypDiff)

Статья рассматривает способы кодирования исходных данных в гиперболическом латентном пространстве через анизотропные диффузионные процессы. Это помогает точнее сохранять топологические характеристики текущей рыночной ситуации и повышает качество ее анализа.

1
Dmitriy Gizlyk
Publicado o artigo Нейросети в трейдинге: Модели направленной диффузии (DDM)
Нейросети в трейдинге: Модели направленной диффузии (DDM)

Предлагаем познакомиться с моделями направленной диффузии, которые используют анизотропные и направленные шумы, зависящие от данных, в процессе прямой диффузии для захвата значимых графовых представлений.

1