Dmitriy Gizlyk / Perfil
- Informações
11+ anos
experiência
|
0
produtos
|
0
versão demo
|
134
trabalhos
|
0
sinais
|
0
assinantes
|
Nos artigos anteriores, nós usamos o gradiente descendente estocástico para treinar uma rede neural usando a mesma taxa de aprendizado para todos os neurônios da rede. Neste artigo, eu proponho olhar para os métodos de aprendizagem adaptativos que permitem a mudança da taxa de aprendizagem para cada neurônio. Nós também consideraremos os prós e os contras dessa abordagem.
Anteriormente, nós consideramos vários tipos de redes neurais junto com suas implementações. Em todos os casos, as redes neurais foram treinadas usando o método gradiente descendente, para o qual nós precisamos escolher uma taxa de aprendizado. Neste artigo, eu quero mostrar a importância de uma taxa corretamente selecionada e o seu impacto no treinamento da rede neural, usando exemplos.
Discutimos anteriormente alguns tipos de implementações da rede neural. Nas redes consideradas, as mesmas operações são repetidas para cada neurônio. Uma etapa lógica adicional é utilizar os recursos da computação multithread (paralelismo em nível de threads) fornecidos pela tecnologia moderna em um esforço para acelerar o processo de aprendizagem da rede neural. Uma das possíveis implementações é descrita neste artigo.
Nós continuamos estudando o mundo das redes neurais. Neste artigo, nós analisaremos outro tipo de rede neural, as redes recorrentes. Este tipo de rede foi proposto para uso com as séries temporais, que são representadas na plataforma de negociação MetaTrader 5 por meio do gráfico de preços.
Como uma continuação do tópico das redes neurais, eu proponho ao leitor a análise das redes neurais convolucionais. Esse tipo de rede neural geralmente é aplicado para analisar imagens visuais. Neste artigo, nós consideraremos a aplicação dessas redes no mercado financeiro.
Neste segundo artigo, nós continuaremos a estudar as redes neurais e nós vamos considerar um exemplo utilizando a nossa classe criada CNet nos Expert Advisors. Nós trabalharemos com dois modelos de rede neural, que apresentam resultados semelhantes tanto em termos de tempo de treinamento quanto de precisão de predição.
A inteligência artificial é frequentemente associada a algo fantasticamente complexo e incompreensível. Ao mesmo tempo, a inteligência artificial é cada vez mais mencionada na vida cotidiana. Notícias sobre conquistas relacionadas ao uso de redes neurais geralmente aparecem em diferentes mídias. O objetivo deste artigo é mostrar que qualquer pessoa pode criar facilmente uma rede neural e usar as conquistas da IA na negociação.
Thanks in advanced.
Este artigo é uma continuação do artigo "Padrões de reversão: Testando o padrão 'topo/fundo duplo'" publicado anteriormente. Agora consideraremos o padrão de reversão O-C-O, o bem conhecido Ombro-Cabeça-Ombro, compararemos o desemprenho de dois padrões e, por último, tentaremos combinar o trading de dois padrões num só sistema de negociação.
Na prática, os traders muitas vezes procuram por pontos de reversão, uma vez que é no momento em que surge a tendência que o preço tem o maior potencial de movimento. É por isso que, na prática da análise técnica, são considerados vários padrões de reversão. Um dos padrões mais famosos e usados é o de 'topo/fundo duplo'. Este artigo apresenta uma opção para detectar padrão algoritmicamente, além disso, nele é testada sua rentabilidade em dados históricos.
No fórum já foi amplamente discutido o uso de ordens limitadas, em vez de colocar take-profit padrão. Qual é a vantagem dessa abordagem e como ela pode ser implementada em nossa negociação? Nesse artigo, quero contar a vocês minha opinião sobre as respostas a essas perguntas.
A principal vantagem dos robôs de negociação é o fato de poderem trabalhar 24 horas por dia em servidores VPS remotos. Ás vezes, é necessário intervir em seu trabalho manualmente, porém, pode não haver acesso direto ao servidor. Será que é possível gerenciar o trabalho de EAs remotamente? Esse artigo propõe uma das maneiras para controlar robôs por meio de comandos externos.
Não é segredo que o sucesso de qualquer robô de negociação depende da seleção correta de parâmetros (otimização). Mas os parâmetros que são ótimos para um intervalo de tempo nem sempre são os melhores em outros períodos. Muitas vezes, os EAs que são lucrativos nos testes se revelam não lucrativos em tempo real. Nesse momento, surge a necessidade de estar otimizando continuamente, o que se torna uma rotina, porém, sempre há alguém que procura maneiras de automatizar o trabalho. Nesse artigo, proponho uma abordagem não padrão para resolver esse problema.
Existem diversas estratégias de negociação - algumas procuram movimentos direcionais e operam com a tendência, já outras identificam faixas de preço e negociam dentro desses corredores. Neste ponto, surge a pergunta: é possível combinar as duas abordagens para aumentar a rentabilidade da negociação?
Comparar várias séries temporais durante uma análise técnica é uma tarefa bastante comum que requer ferramentas apropriadas. Neste artigo, eu sugiro o desenvolvimento de uma ferramenta para análise gráfica e a detecção de correlações entre duas ou mais séries temporais.
O serviço Sinais de negociação se desenvolve rapidamente. E como você está confiando seu dinheiro a um provedor do sinais, seria bom minimizar o risco de perder o depósito. Como lidar com essa selva de sinais de negociação? Como encontrar esse sinal que trará o lucro para você? O artigo propõe a criação de uma ferramenta para analisar visualmente o histórico de trades de sinais de negociação no gráfico do instrumento.