Dmitriy Gizlyk
Dmitriy Gizlyk
4.4 (49)
  • Informações
11+ anos
experiência
0
produtos
0
versão demo
134
trabalhos
0
sinais
0
assinantes
Programação profissional de qualquer complexidade para MT4, MT5, C#.
Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 85): previsão multidimensional de séries temporais
Redes neurais de maneira fácil (Parte 85): previsão multidimensional de séries temporais

Neste artigo, quero apresentar a vocês um novo método abrangente de previsão de séries temporais, que combina harmoniosamente as vantagens dos modelos lineares e dos transformers.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 84): normalização reversível (RevIN)
Redes neurais de maneira fácil (Parte 84): normalização reversível (RevIN)

Há muito já aprendemos que o pré-processamento dos dados brutos desempenha um grande papel na estabilidade do treinamento do modelo. E, para o processamento online de dados "brutos", frequentemente usamos a camada de normalização em lote. No entanto, às vezes surge a necessidade de um procedimento inverso. Um dos possíveis métodos para resolver tais tarefas é discutido neste artigo.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 83): Transformador espaciotemporal de atenção contínua (Conformer)
Redes neurais de maneira fácil (Parte 83): Transformador espaciotemporal de atenção contínua (Conformer)

O algoritmo Conformer, apresentado aqui, foi desenvolvido para prever o tempo, que, em termos de variabilidade e imprevisibilidade, pode ser comparado aos mercados financeiros. O Conformer é um método complexo que combina as vantagens dos modelos de atenção e das equações diferenciais ordinárias.

Look Mode
Look Mode 2024.03.30
Здравствуйте, как эти файлы попробовать (тестировать) из файлы Comformer?
Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 82): modelos de equações diferenciais ordinárias (NeuralODE)
Redes neurais de maneira fácil (Parte 82): modelos de equações diferenciais ordinárias (NeuralODE)

Neste artigo, gostaria de apresentar outro tipo de modelos voltados para o estudo da dinâmica do estado do ambiente.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 81): Análise da dinâmica dos dados considerando o contexto (CCMR)
Redes neurais de maneira fácil (Parte 81): Análise da dinâmica dos dados considerando o contexto (CCMR)

Em trabalhos anteriores, sempre avaliamos o estado atual do ambiente. No entanto, a dinâmica das mudanças dos indicadores sempre ficou "nos bastidores". Neste artigo, quero apresentar a vocês um algoritmo que permite avaliar a mudança direta dos dados entre dois estados consecutivos do ambiente.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 80): modelo generativo adversarial do transformador de grafos (GTGAN)
Redes neurais de maneira fácil (Parte 80): modelo generativo adversarial do transformador de grafos (GTGAN)

Neste artigo, apresento o algoritmo GTGAN, que foi introduzido em janeiro de 2024 para resolver tarefas complexas de criação de layout arquitetônico com restrições de grafos.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 79): consultas agregadas de características (FAQ)
Redes neurais de maneira fácil (Parte 79): consultas agregadas de características (FAQ)

No artigo anterior, nos familiarizamos com um dos métodos de detecção de objetos em imagens. No entanto, o processamento de imagens estáticas é um pouco diferente do trabalho com séries temporais dinâmicas, como aquelas relacionadas à dinâmica dos preços que estamos analisando. Neste artigo, quero apresentar a você o método de detecção de objetos em vídeo, que é mais relevante para a nossa tarefa atual.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 78): Detecção de objetos baseada em Transformador (DFFT)
Redes neurais de maneira fácil (Parte 78): Detecção de objetos baseada em Transformador (DFFT)

Neste artigo, proponho olhar a questão da construção de uma estratégia de trading de outra perspectiva. Em vez de prever o movimento futuro dos preços, tentaremos construir um sistema de trading baseado na análise de dados históricos.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 77): Cross-Covariance Transformer (XCiT)
Redes neurais de maneira fácil (Parte 77): Cross-Covariance Transformer (XCiT)

Em nossos modelos, frequentemente usamos vários algoritmos de atenção. E, provavelmente, usamos Transformadores com mais frequência. A principal desvantagem deles é a exigência de recursos. Neste artigo, quero apresentar um algoritmo que ajuda a reduzir os custos computacionais sem perda de qualidade.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 76): explorando diversos modos de interação (Multi-future Transformer)
Redes neurais de maneira fácil (Parte 76): explorando diversos modos de interação (Multi-future Transformer)

Neste artigo, continuamos o tema de previsão do movimento de preços. E convido você a conhecer a arquitetura do Multi-future Transformer. A ideia principal é decompor a distribuição multimodal do futuro em várias distribuições unimodais, permitindo modelar eficientemente diversos modos de interação entre os agentes na cena.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 75): aumentando a produtividade dos modelos de previsão de trajetórias
Redes neurais de maneira fácil (Parte 75): aumentando a produtividade dos modelos de previsão de trajetórias

Os modelos que estamos criando estão se tornando cada vez maiores e mais complexos. Com isso, aumentam os custos não apenas para o treinamento, mas também para a operação. Além disso, muitas vezes nos deparamos com situações em que o tempo de tomada de decisão é crítico. E, por isso, voltamos nossa atenção para métodos de otimização de desempenho dos modelos sem perder qualidade.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 74): previsão adaptativa de trajetórias
Redes neurais de maneira fácil (Parte 74): previsão adaptativa de trajetórias

Proponho a você conhecer um método bastante eficaz de previsão de trajetórias multiagentes, que é capaz de se adaptar a diferentes condições ambientais.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 73): AutoBots para previsão de movimentos de preço
Redes neurais de maneira fácil (Parte 73): AutoBots para previsão de movimentos de preço

Continuamos a análise dos algoritmos de aprendizado de modelos de previsão de trajetórias. E neste artigo, proponho que você conheça o método chamado “AutoBots”.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 72): previsão de trajetórias em condições de ruído
Redes neurais de maneira fácil (Parte 72): previsão de trajetórias em condições de ruído

A qualidade da previsão de estados futuros desempenha um papel importante no método Goal-Conditioned Predictive Coding, com o qual nos familiarizamos no artigo anterior. Neste artigo, quero apresentar a vocês um algoritmo capaz de aumentar significativamente a qualidade da previsão em ambientes estocásticos, que incluem os mercados financeiros.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 71): Previsão de estados futuros com base em objetivos (GCPC)
Redes neurais de maneira fácil (Parte 71): Previsão de estados futuros com base em objetivos (GCPC)

Nos trabalhos anteriores, conhecemos o método Decision Transformer e vários algoritmos derivados dele. Experimentamos com diferentes métodos de definição de objetivos. Durante os experimentos, trabalhamos com diferentes maneiras de definir objetivos, mas o estudo da trajetória já percorrida pelo modelo sempre ficou fora de nosso foco. Neste artigo, quero apresentar um método que preenche essa lacuna.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 70): melhorando a política usando operadores de forma fechada (CFPI)
Redes neurais de maneira fácil (Parte 70): melhorando a política usando operadores de forma fechada (CFPI)

Neste artigo, propomos explorar um algoritmo que utiliza operadores de melhoria de política de forma fechada para otimizar as ações do Agente em um ambiente off-line.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 69): restrição de política comportamental com base na densidade de dados off-line (SPOT)
Redes neurais de maneira fácil (Parte 69): restrição de política comportamental com base na densidade de dados off-line (SPOT)

No aprendizado off-line, utilizamos um conjunto de dados fixo, e isso não abrange toda a variedade do ambiente. Durante o processo de treinamento, nosso Agente pode gerar ações fora desse conjunto. Sem feedback do ambiente, a precisão dessas ações é duvidosa. Manter a política do Agente dentro do conjunto de treinamento se torna importante para confiar nos resultados. Vamos falar mais sobre isso aqui neste artigo.

JimReaper
JimReaper 2023.12.22
Hi Dmitriy, seems like the article is incomplete.
Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 68): Otimização off-line de políticas baseada em preferências
Redes neurais de maneira fácil (Parte 68): Otimização off-line de políticas baseada em preferências

Desde os primeiros artigos sobre aprendizado por reforço, a gente sempre falou de duas coisas: como explorar o ambiente e definir a função de recompensa. Os artigos mais recentes foram dedicados à exploração durante o aprendizado off-line. Neste aqui, quero apresentar a você um algoritmo em que os autores resolveram deixar de lado a função de recompensa.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 67): Aprendendo com experiências passadas para resolver novos problemas
Redes neurais de maneira fácil (Parte 67): Aprendendo com experiências passadas para resolver novos problemas

Neste artigo, continuaremos a falar sobre métodos de coleta de dados em uma amostra de treinamento. É claro que o processo de aprendizado requer constante interação com o ambiente. Mas as situações podem variar.

JimReaper
JimReaper 2023.12.09
THIS IS GENIUS WORK Dmitriy! I Love this!
Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 66): Problemáticas da pesquisa em treinamento off-line
Redes neurais de maneira fácil (Parte 66): Problemáticas da pesquisa em treinamento off-line

O treinamento de modelos em modo off-line é realizado com dados de uma amostra de treinamento previamente preparada. Isso nos oferece várias vantagens, mas também comprime significativamente as informações sobre o ambiente em relação às dimensões da amostra de treinamento. Isso, por sua vez, limita as possibilidades de pesquisa. Neste artigo, quero apresentar um método que permite enriquecer a amostra de treinamento com dados o mais diversificados possível.

JimReaper
JimReaper 2023.12.05
You are the best! Thank you so much for your research. Beautifully done.!