Dmitriy Gizlyk / Perfil
- Informações
|
12+ anos
experiência
|
0
produtos
|
0
versão demo
|
|
134
trabalhos
|
0
sinais
|
0
assinantes
|
Предлагаем познакомиться с инновационным подходом к прогнозированию временных рядов с пропущенными данными на базе фреймворка GinAR. В статье показана реализация ключевых компонентов на OpenCL, что обеспечивает высокую производительность. В следующей публикации мы подробно рассмотрим интеграцию этих решений в MQL5. Это позволит понять, как применять метод на практике в трейдинге.
Приглашаем вас познакомиться с фреймворком K²VAE и вариантом интеграции предложенных подходов в торговую систему. Вы узнаете, как гибридный подход Koopman–Kalman–VAE помогает строить адаптивные и интерпретируемые модели. А в завершении статьи представлены практические результаты использования реализованных решений.
Предлагаем познакомиться с новым подходом, который объединяет классические методы и современные нейросети для анализа временных рядов. В статье подробно раскрыта архитектура и принципы работы модели K²VAE.
Предлагаем ознакомиться с оригинальной реализацией фреймворка K²VAE — гибкой модели, способной линейно аппроксимировать сложную динамику в латентном пространстве. В статье показано, как реализовать ключевые компоненты на языке MQL5, включая параметризованные матрицы и их управление вне стандартных нейросетевых слоёв. Материал будет полезен тем, кто ищет практический подход к созданию интерпретируемых моделей временных рядов.
Предлагаем погрузиться в захватывающий мир LightGTS — лёгкого, но мощного фреймворка для прогноза временных рядов, где адаптивная свёртка и RoPE‑кодирование сочетаются с инновационным методами внимания. В нашей статье вы найдёте детальное описание всех компонентов — от создания патчей до сложной смеси экспертов в декодере, готовых к интеграции в MQL5‑проекты. Откройте для себя, как LightGTS выводит автоматическую торговлю на новый уровень!
Предлагаем вам отправиться в захватывающее путешествие по миру адаптивного анализа финансовых временных рядов и узнать, как превратить сложный спектральный разбор и гибкую свёртку в реальные торговые сигналы. Вы увидите, как LightGTS слушает ритм рынка, подстраиваясь под его изменения шагом переменного окна, и как OpenCL-ускорение позволяет превратить вычисления в кратчайший путь к прибыльным решениям.
Предлагаем познакомиться с инновационной техникой адаптивного патчинга — способа гибко сегментировать временные ряды с учётом их внутренней периодичности. А также с техникой эффективного кодирования, позволяющего сохранять важные семантические характеристики при работе с данными разного масштаба. Эти методы открывают новые возможности для точной обработки сложных многомасштабных данных, характерных для финансовых рынков, и существенно повышают стабильность и обоснованность прогнозов.
Эта статья увлекательно покажет, как SwiGLU‑эмбеддинг раскрывает скрытые паттерны рынка, а разреженная смесь экспертов внутри Decoder‑Only Transformer делает прогнозы точнее при разумных вычислительных затратах. Мы подробно разбираем интеграцию Time‑MoE в MQL5 и OpenCL, шаг за шагом описываем настройку и обучение модели.
Предлагаем познакомиться с практической реализацией блока разреженной смеси экспертов для временных рядов в вычислительной среде OpenCL. В статье шаг за шагом разбирается работа маскированной многооконной свёртки, а также организация градиентного обучения в условиях множественных информационных потоков.
Propomos conhecer o framework moderno Time-MoE, adaptado para tarefas de previsão de séries temporais. No artigo, implementaremos passo a passo os principais componentes da arquitetura, acompanhando-os com explicações e exemplos práticos. Essa abordagem permitirá não apenas compreender os princípios de funcionamento do modelo, mas também aplicá-los em tarefas reais de trading.
Este artigo é dedicado à construção prática do modelo TimeFound para previsão de séries temporais. São abordadas as principais etapas de implementação das abordagens centrais do framework utilizando os recursos do MQL5.
Neste artigo, montamos passo a passo o núcleo do modelo inteligente TimeFound, adaptado para tarefas reais de previsão de séries temporais. Se você se interessa pela implementação prática de algoritmos de patching com redes neurais em MQL5, você está no lugar certo.
O framework Mantis transforma séries temporais complexas em tokens informativos e serve como uma base confiável para um Agente de trading inteligente, pronto para operar em tempo real.
Mantis é uma ferramenta universal para análise profunda de séries temporais, escalável de forma flexível para quaisquer cenários financeiros. Saiba como a combinação de patching, convoluções locais e atenção cruzada permite obter uma interpretação de alta precisão dos padrões de mercado.
Conheça o Mantis, um modelo fundamental leve para classificação de séries temporais baseado em Transformer, com pré-treinamento contrastivo e atenção híbrida, que garantem precisão recorde e escalabilidade.
Este artigo permitirá que você veja como o Mamba4Cast transforma a teoria em um algoritmo de trading funcional e prepara o terreno para seus próprios experimentos. Não perca a oportunidade de obter um espectro completo de conhecimento e inspiração para o desenvolvimento da sua própria estratégia.
Damos continuidade ao conhecimento do framework Mamba4Cast. E hoje vamos nos aprofundar na implementação prática das abordagens propostas. O Mamba4Cast foi criado não para um longo aquecimento em cada nova série temporal, mas para entrar em operação de forma instantânea. Graças à ideia de Zero-Shot Forecasting, o modelo é capaz de fornecer imediatamente previsões de alta qualidade em dados reais sem retreinamento e sem ajuste fino de hiperparâmetros.
Neste artigo, conhecemos o framework Mamba4Cast e analisamos em detalhe um de seus componentes-chave, a codificação posicional baseada em marcas temporais. É mostrado como é formada a incorporação temporal levando em conta a estrutura de calendário dos dados.
O artigo analisa a adaptação e a implementação prática do framework ACEFormer por meio do MQL5 no contexto do trading algorítmico. São apresentados as principais decisões arquiteturais, as particularidades do treinamento e os resultados dos testes do modelo com dados reais.
Propomos conhecer a arquitetura ACEFormer, uma solução moderna que combina a eficiência da atenção probabilística com a decomposição adaptativa de séries temporais. O material será útil para quem busca um equilíbrio entre desempenho computacional e precisão de previsão nos mercados financeiros.