Dmitriy Gizlyk
Dmitriy Gizlyk
4.4 (49)
  • Informações
11+ anos
experiência
0
produtos
0
versão demo
134
trabalhos
0
sinais
0
assinantes
Escrever programas profissionais de qualquer complexidade para MT4, MT5, C#.
Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 26): aprendizado por reforço
Redes neurais de maneira fácil (Parte 26): aprendizado por reforço

Continuamos a estudar métodos de aprendizado de máquina. Com este artigo, começamos outro grande tópico chamado aprendizado por reforço. Essa abordagem permite que os modelos estabeleçam certas estratégias para resolver as tarefas. E esperamos que essa propriedade inerente ao aprendizado de reforço abra novos horizontes para a construção de estratégias de negociação.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 25): Exercícios práticos de transferência de aprendizado
Redes neurais de maneira fácil (Parte 25): Exercícios práticos de transferência de aprendizado

Nos dois últimos artigos, criamos uma ferramenta que permite criar e editar modelos de redes neurais. E agora é hora de avaliar o uso potencial da transferência de aprendizado (transfer learning, em inglês) usando exemplos práticos.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 24): Melhorando a ferramenta para transferência de aprendizado
Redes neurais de maneira fácil (Parte 24): Melhorando a ferramenta para transferência de aprendizado

No último artigo, elaboramos uma ferramenta para criar e editar a arquitetura de redes neurais. E hoje quero convidá-lo a continuar trabalhando nela, para torná-la mais amigável. De certa forma, ao fazer isso, estamos nos afastando um pouco do nosso tópico. Mas convenhamos que a organização do espaço de trabalho desempenha um papel importante na obtenção do resultado.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 23): Criando uma ferramenta para transferência de aprendizado
Redes neurais de maneira fácil (Parte 23): Criando uma ferramenta para transferência de aprendizado

Nesta série de artigos, já mencionamos a transferência de aprendizado mais de uma vez. Mas até agora o assunto não foi além das menções. Sugiro preencher essa lacuna e dar uma olhada mais de perto na transferência de aprendizado.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 22): Aprendizado não supervisionado de modelos recorrentes
Redes neurais de maneira fácil (Parte 22): Aprendizado não supervisionado de modelos recorrentes

Continuamos a estudar algoritmos de aprendizado não supervisionado. E agora proponho discutir as particularidades por trás do uso de autocodificadores para treinar modelos recorrentes.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 21): Autocodificadores variacionais (VAE)
Redes neurais de maneira fácil (Parte 21): Autocodificadores variacionais (VAE)

No último artigo, analisamos o algoritmo do autocodificador. Como qualquer outro algoritmo, tem suas vantagens e desvantagens. Na implementação original, o autocodificador executa a tarefa de separar os objetos da amostra de treinamento o máximo possível. E falaremos sobre como lidar com algumas de suas deficiências neste artigo.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 20): autocodificadores
Redes neurais de maneira fácil (Parte 20): autocodificadores

Continuamos a estudar algoritmos de aprendizado não supervisionado. Talvez você como o leitor possa ter dúvidas sobre se as publicações recentes se encaixam no tópico de redes neurais. Neste novo artigo, voltamos ao uso de redes neurais.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 19): Regras de associação usando MQL5
Redes neurais de maneira fácil (Parte 19): Regras de associação usando MQL5

Continuamos o tópico de busca de regras de associação. No artigo anterior, consideramos os aspectos teóricos desse tipo de problema. No artigo de hoje, ensinarei a implementação do método FP-Growth usando MQL5. Também vamos testá-la com dados reais.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 18): Regras de associação
Redes neurais de maneira fácil (Parte 18): Regras de associação

Como continuação desta série, gostaria de apresentar a vocês outro tipo de tarefa dos métodos de aprendizado não supervisionado, em particular a busca de regras de associação. Este tipo de tarefa foi usado pela primeira vez no varejo para analisar cestas de compras. Neste artigo falaremos sobre as possibilidades de utilização de tais algoritmos no trading.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 17): Redução de dimensionalidade
Redes neurais de maneira fácil (Parte 17): Redução de dimensionalidade

Continuamos a estudar modelos de inteligência artificial, em particular, algoritmos de aprendizado não supervisionados. Já nos encontramos com um dos algoritmos de agrupamento. E neste artigo quero compartilhar com vocês outra maneira de resolver os problemas de redução de dimensionalidade.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 16): Uso prático do agrupamento
Redes neurais de maneira fácil (Parte 16): Uso prático do agrupamento

No artigo anterior, construímos uma classe para agrupamento de dados. Hoje eu gostaria de compartilhar com vocês as formas mediante as quais os resultados podem ser usados para resolver problemas práticos de negociação.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 15): Agrupamento de dados via MQL5
Redes neurais de maneira fácil (Parte 15): Agrupamento de dados via MQL5

Continuamos a estudar o método de agrupamento. Neste artigo, criaremos uma nova classe CKmeans para implementar um dos métodos de agrupamento k-médias mais comuns. Com base nos resultados dos testes, podemos concluir que o modelo é capaz de identificar cerca de 500 padrões.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 14): Agrupamento de dados
Redes neurais de maneira fácil (Parte 14): Agrupamento de dados

Devo confessar que já se passou mais de um ano desde que o último artigo foi publicado. Em um período tão longo como esse, é possível reconsiderar muitas coisas, desenvolver novas abordagens. E neste novo artigo, gostaria de me afastar um pouco do método de aprendizado supervisionado usado anteriormente, e sugerir um pouco de mergulho nos algoritmos de aprendizado não supervisionado. E, em particular, desejaria analisar um dos algoritmos de agrupamento, o k-médias (k-means).

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 13): normalização em lote
Redes neurais de maneira fácil (Parte 13): normalização em lote

No artigo anterior, começamos a examinar métodos para melhorar a qualidade do treinamento da rede neural. Neste artigo, proponho continuar este tópico e considerar uma outra abordagem, em particular a de normalização de dados em lote.

Dmitriy Gizlyk
Feedback deixado para o cliente no serviço Доработка робота МТ5 на основе индикатора с открытым кодом
dma19
dma19 2021.06.11
hello dimitry. is it possible to submit a job request from you?
Dmitriy Gizlyk
Publicado o artigo Redes Neurais de Maneira Fácil (Parte 12): Dropout
Redes Neurais de Maneira Fácil (Parte 12): Dropout

Como a próxima etapa no estudo das redes neurais, eu sugiro considerar os métodos de aumentar a convergência durante o treinamento da rede neural. Existem vários desses métodos. Neste artigo, nós consideraremos um deles intitulado Dropout.

Dmitriy Gizlyk
Publicado o artigo Redes Neurais de Maneira Fácil (Parte 11): Uma visão sobre a GPT
Redes Neurais de Maneira Fácil (Parte 11): Uma visão sobre a GPT

Talvez um dos modelos mais avançados entre as redes neurais de linguagem atualmente existentes seja a GPT-3, cuja variante máxima contém 175 bilhões de parâmetros. Claro, nós não vamos criar tal monstro em nossos PCs domésticos. No entanto, nós podemos ver quais soluções arquitetônicas podem ser usadas em nosso trabalho e como nós podemos nos beneficiar delas.

Dmitriy Gizlyk
Publicado o artigo Redes neurais de maneira fácil (Parte 10): Atenção Multi-Cabeça
Redes neurais de maneira fácil (Parte 10): Atenção Multi-Cabeça

Nós já consideramos anteriormente o mecanismo de self-attention (autoatenção) em redes neurais. Na prática, as arquiteturas de rede neural modernas usam várias threads de self-attention paralelas para encontrar várias dependências entre os elementos de uma sequência. Vamos considerar a implementação de tal abordagem e avaliar seu impacto no desempenho geral da rede.

Dmitriy Gizlyk
Publicado o artigo Redes Neurais de Maneira Fácil (Parte 9): Documentação do trabalho
Redes Neurais de Maneira Fácil (Parte 9): Documentação do trabalho

Nós já percorremos um longo caminho e o código em nossa biblioteca está se tornando cada vez maior. Isso torna difícil controlar todas as conexões e dependências. Portanto, eu sugiro criar uma documentação para o código criado anteriormente e mantê-lo atualizado a cada nova etapa. A documentação devidamente preparada nos ajudará a ver a integridade do nosso trabalho.

Dmitriy Gizlyk
Publicado o artigo Redes Neurais de Maneira Fácil (Parte 8): Mecanismos de Atenção
Redes Neurais de Maneira Fácil (Parte 8): Mecanismos de Atenção

Nos artigos anteriores, nós já testamos várias opções para organizar as redes neurais. Nós também estudamos as redes convolucionais emprestadas dos algoritmos de processamento de imagem. Neste artigo, eu sugiro estudarmos os Mecanismos de Atenção, cujo surgimento deu impulso ao desenvolvimento dos modelos de linguagem.