Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 22): FOREX (III)
Para quem ainda não entendeu a diferença entre o mercado de bolsa e o de forex, apesar de este já ser o terceiro artigo em que estou abordando isto. Devo deixar claro, que a grande diferença, é o fato de que no forex não existe, ou melhor, não nos é informado algumas coisas a respeito do que aconteceu de fato na negociação.
Teoria das Categorias em MQL5 (Parte 6): produtos fibrados monomórficos e coprodutos fibrados epimórficos
A teoria das categorias é um ramo diversificado e em expansão da matemática que só recentemente começou a ser abordado na comunidade MQL5. Esta série de artigos tem como objetivo analisar alguns de seus conceitos para criar uma biblioteca aberta e utilizar ainda mais essa maravilhosa seção na criação de estratégias de negociação.
Desenvolvendo um sistema de Replay - Simulação de mercado ( Parte 21): FOREX (II)
Vamos continuar a montagem do sistema para cobrir o mercado de FOREX. Então para resolver este problema, precisaríamos primeiramente, declarar o carregamento dos tickets, antes de fazer o carregamento das barras previas. Isto resolve o problema, mas ao mesmo tempo força o usuário, a um tipo de modelagem do arquivo de configuração, que ao meu ver não faz muito sentido. O motivo é que, ao desenvolver a programação, responsável por analisar e executar o que esta no arquivo de configuração, podemos permitir ao usuário, declarar as coisas em qualquer ordem.
Implementando o fator Janus em MQL5
Gary Anderson desenvolveu um método de análise de mercado baseado em uma teoria que chamou de fator Janus. Essa teoria descreve um conjunto de indicadores que podem ser usados para identificar tendências e avaliar o risco de mercado. Neste artigo, vamos implementar essas ferramentas no MQL5.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 20): FOREX (I)
intenção inicial deste artigo, não será cobrir todas as características do FOREX. Mas sim e apenas, adequar o sistema, de forma que você possa fazer no mínimo, um replay de mercado. Já a simulação, ficará para um outro momento. No entanto, caso você não os tenha os ticks, e tenha apenas as barras. Pode com algum trabalho, simular possíveis transações, que possam ter ocorrido no FOREX. Isto até que eu mostre como adaptar o simulador. O fato de se tentar trabalhar com dados vindos do FOREX, dentro do sistema, sem que ele seja modificado. Faz com que ocorra erros de range.
Algoritmos de otimização populacionais: Algoritmo semelhante ao eletromagnetismo (EM)
O artigo descreve os princípios, os métodos e as possibilidades de aplicação do EM a diferentes problemas de otimização. Ele uma ferramenta de otimização eficiente, capaz de lidar com grandes quantidades de dados e funções multidimensionais.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 19): Ajustes necessários
O que de fato vamos fazer aqui, é preparar o terreno, de forma que quando for preciso adicionar algumas novas coisas ao código, isto aconteça de forma suave e tranquila. O código atual ainda não consegue cobrir ou dar cabo de algumas coisas, que serão necessárias para um avanço significativo. Precisamos que tudo seja construído de maneira que o esforço de implementação de algumas coisas seja o menor possível. Se isto for feito adequadamente teremos a possibilidade de ter um sistema realmente bastante versátil. Sendo capaz de se adaptar muito facilmente a qualquer situação que for preciso ser coberta.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 18): Tiquete e mais tiquetes (II)
Neste, fica extremamente claro, que as métricas, estão muito longe, do tempo ideal de confecção das barras de 1 minuto. Assim então, a primeira coisa que de fato iremos corrigir, será justamente isto. Corrigir a questão da temporização, não é algo complicado. Por mais incrível que possa parecer, é na verdade até bem simples de ser feito. Porém não fiz a correção no artigo anterior, por que lá o desejo era explicar, como fazer para jogar os dados de tickets, que estavam sendo usados para gerar as barras de 1 minuto no gráfico, para dentro da janela de observação de mercado.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 17): Tiquete e mais tiquetes (I)
Aqui vamos começar a ver como implementar algo realmente bem interessante e curioso. Mas ao mesmo tempo extremamente complicado por conta de algumas questões que muitos confundem. Mas pior do que as confundir, é o fato de que alguns operadores que se dizem profissionais, não fazem ideia a importância de tais conceitos no mercado de capital. Sim, apesar do foco aqui ser programação, entender algumas questões que envolvem operações em mercados, é de extrema valia para o que iremos começar a implementar aqui.
Algoritmos de otimização populacionais: Algoritmo de mudas, semeadura e crescimento (SSG)
O algoritmo de “mudas, semeadura e crescimento” (Saplings Sowing and Growing up, SSG) é inspirado em um dos organismos mais resistentes do planeta, um exemplo notável de sobrevivência em inúmeras condições.
Ciência de Dados e Aprendizado de Máquina (Parte 13): Analisando o mercado financeiro usando a análise de componentes principais (PCA)
Vamos tentar melhorar qualitativamente nossa análise dos mercados financeiros usando a análise de componentes principais (PCA). Aprenderemos como essa técnica pode ajudar a identificar padrões ocultos nos dados, identificar tendências de mercado ocultas e otimizar estratégias de investimento. Neste artigo, veremos como o PCA oferece uma nova perspectiva para a análise de dados financeiros complexos, ajudando-nos a ver informações que não percebemos usando abordagens tradicionais. Veremos se sua aplicação aos dados do mercado financeiro proporciona uma vantagem sobre a concorrência e nos ajuda a ficar um passo à frente.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 16): Um novo sistema de classes
Precisamos nos organizar melhor. O código está crescendo e se não o organizarmos agora, será impossível fazer isto depois. Então agora vamos dividir para conquistar. O fato de que o MQL5, nos permite usar classes, nos ajudará nesta tarefa. Mas para fazer isto é preciso que você tenha algum conhecimento sobre algumas coisas envolvidas nas classes. E talvez a que mais deixe, aspirantes e iniciantes perdidos seja a herança. Então neste artigo, irei de forma prática e simples como fazer uso de tais mecanismos.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 15): Nascimento do SIMULADOR (V) - RANDOM WALK
Neste artigo iremos finalizar a fase, onde estamos desenvolvendo o simulador para o nosso sistema. O principal proposito aqui será ajustar o algoritmo visto no artigo anterior. Tal algoritmo tem como finalidade criar o movimento de RANDOM WALK. Por conta disto, o entendimento do conteúdo dos artigos anteriores, é primordial para acompanhar o que será explicado aqui. Se você não acompanhou o desenvolvimento do simulador, aconselho você a ver esta sequência desde o inicio. Caso contrário, poderá ficar perdido no que será explicado aqui.
Algoritmos de otimização populacionais: Algoritmo do macaco (MA)
Neste artigo, estaremos analisando o algoritmo do macaco (Monkey Algorithm, MA). A habilidade destes animais ágeis para superar obstáculos complexos e atingir as partes mais inacessíveis das árvores foi a inspiração para a concepção do MA.
Desenvolvendo um fator de qualidade para os EAs
Nesse artigo vamos explicar como desenvolver um fator de qualidade para ser retornado pelo seu EA no testador de estratégia. Iremos mostrar duas formas de cálculo conhecidas (Van Tharp e Sunny Harris).
Teoria das Categorias em MQL5 (Parte 3)
A Teoria das Categorias representa um segmento diversificado e em constante expansão da matemática, que até agora está relativamente pouco explorado na comunidade MQL5. Esta sequência de artigos visa elucidar algumas das suas concepções com o intuito de constituir uma biblioteca aberta e potencializar ainda mais o uso deste notável setor na elaboração de estratégias de negociação.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 14): Nascimento do SIMULADOR (IV)
Neste artigo continuaremos a fase de desenvolvimento do simulador. Mas agora, vamos ver como criar de fato um movimento do tipo RANDOM WALK. Este tipo de movimentação é muito interessante, pois tudo envolvido no mercado de capitais tem como base este tipo de movimentação. Além do mais você vai começar a entender alguns conceitos importantes para quem faz estáticas de mercado.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 13): Nascimento do SIMULADOR (III)
Aqui iremos dar uma leve otimizada nas coisas. Isto para facilitar o que iremos fazer no próximo artigo. Mas também irei explicar como você pode visualizar o que o simulador está gerando em termos de aleatoriedade.
Ciência de dados e aprendizado de máquina (Parte 11): Classificador Naive Bayes e teoria da probabilidade na negociação
A negociação com base em probabilidades pode ser comparada a caminhar sobre uma corda bamba - ela requer precisão, equilíbrio e uma compreensão clara do risco envolvido. No mundo do trading, a probabilidade é fundamental. É ela que determina o resultado: sucesso ou fracasso, lucro ou prejuízo. Ao aproveitar as possibilidades da probabilidade, os traders podem tomar decisões mais fundamentadas, gerenciar os riscos de maneira mais eficiente e alcançar seus objetivos financeiros. Não importa se você é um investidor experiente ou um trader iniciante, entender a probabilidade pode ser a chave para desbloquear seu potencial de negociação. Neste artigo, exploraremos o fascinante mundo do trading baseado em probabilidades e mostraremos como levar seu modo de negociar a um nível superior.
Algoritmos de otimização populacionais: Busca harmônica (Harmony Search, HS)
Hoje, estudaremos e testaremos o algoritmo de otimização mais avançado, a busca harmônica (HS), que é inspirada no processo de procura da harmonia sonora perfeita. Então, qual algoritmo é agora o líder em nossa classificação?
Algoritmos de otimização populacionais: Algoritmo de pesquisa gravitacional (GSA)
O GSA é um algoritmo populacional inspirado na natureza inanimada. Sua capacidade de modelar com alta precisão a interação entre corpos físicos, através da lei da gravidade de Newton incorporada no algoritmo, permite contemplar um espetáculo fascinante de dança entre sistemas planetários e aglomerados galácticos, representado de forma impressionante em animações. Hoje vamos discutir um dos algoritmos de otimização mais interessantes e originais. Um simulador de movimento de objetos espaciais está incluído.
Alan Andrews e suas técnicas de análise de séries temporais
Alan Andrews é um dos mais renomados "educadores" do mundo do trading atual, no campo da análise de mercado. Suas "forquilhas" estão presentes em praticamente todos os programas modernos de análise de cotações. No entanto, a maioria dos traders utiliza apenas uma pequena fração das possibilidades oferecidas por essa ferramenta. O curso original de Andrews abrange não apenas a descrição das forquilhas (embora sejam o aspecto principal), mas também outras diretrizes úteis. Este artigo apresenta uma visão dessas incríveis técnicas de análise de gráficos que Andrews ensinou em seu curso original. Atenção: muitas imagens serão utilizadas.
Medindo o valor informativo do Indicador
O aprendizado de máquina se tornou uma técnica popular de desenvolvimento de estratégias. Na negociação, tradicionalmente, mais atenção é dada à maximização da lucratividade e à precisão das previsões. Enquanto isso, o processamento de dados usado para construir modelos preditivos permanece na periferia. Neste artigo, discutimos o uso do conceito de entropia para avaliar a adequação de indicadores na construção de modelos preditivos, conforme descrito no livro Testing and Tuning Market Trading Systems escrito por Timothy Masters.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 12): Nascimento do SIMULADOR (II)
Desenvolver um simulador pode ser muito mais interessante do que parece. Então vamos dar mais alguns passos nesta direção, pois a coisa está começando a ficar empolgante.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 10): Usando apenas dados reais na replay
Aqui vamos ver como você pode utilizar dados mais fieis ( tickets negociados ) no sistema de replay, sem necessariamente ter que se preocupar se eles estão ou não ajustados.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 09): Eventos Customizados
Aqui vamos ver como disparar eventos customizados e melhorar a questão sobre como o indicador informa o status do serviço de replay/simulação.
Algoritmos de otimização populacionais: Otimização de ervas invasivas (IWO)
A surpreendente capacidade das plantas daninhas de sobreviver em uma ampla variedade de condições foi a inspiração para o desenvolvimento de um poderoso algoritmo de otimização. O IWO (Invasive Weed Optimization) é considerado um dos melhores entre os analisados até o momento.
Algoritmos de otimização populacionais: algoritmo de otimização de forrageamento bacteriano (BFO)
A base da estratégia de forrageamento de E. coli (E. coli) inspirou cientistas a desenvolverem o algoritmo de otimização BFO. Esse algoritmo apresenta ideias originais e abordagens promissoras para otimização e merece um estudo mais aprofundado.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 08): Travando o Indicador
Aqui vou mostrar como travar um indicador, usando pura e simplesmente a linguagem MQL5, de uma forma muito interessante e surpreendente.
Algoritmos de otimização populacionais: Algoritmo do morcego
Hoje estudaremos o algoritmo do morcego (Bat algorithm, BA), que possui convergência incrível em funções suaves.
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 05): cadeias de Markov
As cadeias de Markov são uma poderosa ferramenta matemática que pode ser usada para modelar e prever dados de séries temporais em vários campos, incluindo finanças. Na modelagem e previsão de séries temporais financeiras, as cadeias de Markov são frequentemente usadas para modelar a evolução de ativos financeiros ao longo do tempo, ativo esses como preços de ações ou pares de moedas. Uma das principais vantagens dos modelos das cadeias de Markov é sua simplicidade e facilidade de uso.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 07): Primeiras melhorias (II)
No artigo anterior fizemos a correção de alguns pontos, e adicionamos alguns testes no nosso sistema de replay, estes tentam garantir a maior estabilidade quanto for possível obter, ao mesmo tempo iniciamos a criação e o uso de um arquivo de configuração para o sistema de replay.
Algoritmos de otimização populacionais: algoritmo de vaga-lumes
Vamos considerar o método de otimização de vaga-lumes (Firefly Algorithm, FA). Esse algoritmo evoluiu de um método desconhecido por meio de modificações para se tornar um líder real na tabela de classificação.
Redes neurais de maneira fácil (Parte 34): Função quantil totalmente parametrizada
Continuamos a estudar os algoritmos de aprendizado Q distribuído. Em artigos anteriores, já discutimos os algoritmos de aprendizado Q distribuído e de quantil. No primeiro, aprendemos as probabilidades de determinados intervalos de valores. No segundo, aprendemos intervalos com uma probabilidade específica. Em ambos os algoritmos, utilizamos o conhecimento prévio de uma distribuição e ensinamos a outra. Neste artigo, vamos examinar um algoritmo que permite que o modelo aprenda ambas as distribuições.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 06): Primeiras melhorias (I)
Neste artigo vamos começar a estabilizar todo o sistema. Pois sem que o sistema esteja de fato estabilizado, podemos correr risco de não conseguir cumprir os próximos passos.
Algoritmos de otimização populacionais: Busca por cardume de peixes (FSS - Fish School Search)
O FSS (Fish School Search) é um algoritmo avançado de otimização inspirado no comportamento dos peixes que nadam em cardumes. Aproximadamente 80% desses peixes nadam em comunidades organizadas de parentes, o que tem sido comprovado como uma estratégia importante para melhorar a eficiência de procura por alimento e proteção contra predadores.
Desenvolvendo um sistema de Replay — Simulação de mercado (Parte 05): Adicionando Previas
Conseguimos desenvolver, uma forma de fazer com que o replay de mercado, fosse executado dentro de um tempo bastante realista e aceitável. Vamos continuar nosso projeto. Agora iremos adicionar dados de forma a ter um comportamento melhor do replay.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 04): Ajustando as coisas (II)
Vamos continuar a criação do sistema e controle. Já que sem uma forma de controlar o serviço, fica muito complicado dar algum outro passo a fim de melhorar algo no sistema.
Teoria das Categorias em MQL5 (Parte 2)
A Teoria das Categorias é um ramo diverso da Matemática e em expansão, sendo uma área relativamente recente na comunidade MQL5. Esta série de artigos visa introduzir e examinar alguns de seus conceitos com o objetivo geral de estabelecer uma biblioteca aberta que atraia comentários e discussões enquanto esperamos promover o uso deste campo notável no desenvolvimento da estratégia dos traders.
Ciência de dados e Aprendizado de Máquina (parte 10): Regressão de Ridge
A regressão de Ridge é uma técnica simples para reduzir a complexidade do modelo e evitar o ajuste excessivo que pode resultar da regressão linear simples