MQL5言語を使ったMetaTrader 5の統合に関する記事

icon

トレーダーはしばしば革新的なアプローチを要する、興味深いチャレンジに出会います。このカテゴリは、価格データとトレーディング結果を評価し、分析し、処理するための、決して思いもしなかったソリューションを提供する記事を特集します。記事は様々な統合ソリューションについて書かれており、データベースとICQの結合、OpenCLの使用、そしてソーシャルネットワーク、DelphiとC#の使用を含んでいます。

特別に用意された数学的なニューラルなパッケージ、さらにはもっと多くのものをどのように使うかを知るために読み進んでください。作者になりMQL5.communityのメンバーと独自のアイデアを共有してください。

新しい記事を追加
最新 | ベスト
フラクタル指数とハースト指数の財務時系列を予測する能力の評価
フラクタル指数とハースト指数の財務時系列を予測する能力の評価

フラクタル指数とハースト指数の財務時系列を予測する能力の評価

金融データのフラクタル行動の探索に関する研究は、経済時系列の一見混沌とした行動の背後に、参加者の集団行動の隠されたメカニズムがあることを前提にしています。 これらのメカニズムは、価格シリーズの特性を定義することができ、取引所の価格ダイナミクスの出現につながることができます。 これをトレーディングに適用すると、実際に関連するスケールと時間枠のフラクタルパラメータを効率的かつ確実に推定できるインジケータの恩恵を受けることができます。
Net Framework および C# に基づくグラフィカル インターフェイスの開発 (パート 2): その他のグラフィカル要素
Net Framework および C# に基づくグラフィカル インターフェイスの開発 (パート 2): その他のグラフィカル要素

Net Framework および C# に基づくグラフィカル インターフェイスの開発 (パート 2): その他のグラフィカル要素

この記事は、前回の記事".Net Framework と C#に基づいてEAとインジケータのグラフィカルインターフェイスを開発する"のフォローアップです。 グラフィカルインターフェイスを作成するための新しいグラフィカル要素を紹介します。
f()10分でできるMQL5 のためのDLL (パート II): Visual Studio 2017で作成
f()10分でできるMQL5 のためのDLL (パート II): Visual Studio 2017で作成

f()10分でできるMQL5 のためのDLL (パート II): Visual Studio 2017で作成

元の基本となる記事との関連性は失われていませんが、このトピックに興味がある場合は、まず最初の記事を読んでください。 しかし、前回の記事から時間が経過しているので、現在の Visual Studio 2017 には、更新されたインターフェイスがあります。 また、MetaTrader5プラットフォームにも新しい機能が追加されました。 この記事では、DLLのプロジェクト開発、およびセットアップと MetaTrader5 ツールとのやり取りについて説明します。
CSSセレクタを使用した HTML ページからの構造化データの抽出
CSSセレクタを使用した HTML ページからの構造化データの抽出

CSSセレクタを使用した HTML ページからの構造化データの抽出

この記事では、CSS セレクタに基づいて HTML ドキュメントからデータを分析および変換するための汎用的な方法について説明します。 トレードレポート、テスターレポート、お気に入りの経済カレンダー、パブリックシグナル、アカウント監視、その他のオンラインクオートソースは MQL から直接利用可能になります。
MetaTrader5 での MATLAB 2018 計算関数の使用
MetaTrader5 での MATLAB 2018 計算関数の使用

MetaTrader5 での MATLAB 2018 計算関数の使用

2015年にMATLAB パッケージがアップグレードされた後、DLL ライブラリを作成する最新のメソッドを検討する必要がありました。 この記事では、サンプルの予測インジケータを使用して、現代の64ビットバージョンのプラットフォームを使用して MetaTrader5 と MATLAB をリンクするメソッドを説明します。 MATLAB の接続シーケンス全体を考慮することにより、MQL5 開発者は速く高度な計算機能があるアプリケーションを作成し、«落とし穴»を回避することができます。
MQLによるMQLの構文解析
MQLによるMQLの構文解析

MQLによるMQLの構文解析

本稿では、MQLに基づいたソースコードの解析に使用されるプリプロセッサ、スキャナ、パーサについて説明します。MQLの実装が添付されています。
MetaTrader5 と Python インテグレーション: データの受信と送信
MetaTrader5 と Python インテグレーション: データの受信と送信

MetaTrader5 と Python インテグレーション: データの受信と送信

包括的なデータ処理には広範なツールが必要であり、多くの場合、1つのアプリケーションのサンドボックスの範疇を超えています。 専門のプログラミング言語は、データ、統計、機械学習の処理と分析に使用されます。 データ処理の主要なプログラミング言語の1つは Python です。 この記事では、ソケットを使用して MetaTrader5 と Python を接続する方法、およびターミナル API を介してクオートを受け取る方法について説明します。
Net FrameworkとC#に基づくエキスパートアドバイザーと指標のためのグラフィカルインターフェイスの開発
Net FrameworkとC#に基づくエキスパートアドバイザーと指標のためのグラフィカルインターフェイスの開発

Net FrameworkとC#に基づくエキスパートアドバイザーと指標のためのグラフィカルインターフェイスの開発

本稿では、Visual Studioを使用してグラフィカルウィンドウを作成してからエキスパートアドバイザーのMQLコードに統合する簡単で迅速な方法を紹介します。専門家ではないユーザを対象としており、C#および.NETテクノロジに関する知識は必要ありません。
MetaTrader5でカスタム MOEX シンボルを作成およびテストする方法
MetaTrader5でカスタム MOEX シンボルを作成およびテストする方法

MetaTrader5でカスタム MOEX シンボルを作成およびテストする方法

この記事では、MQL5 言語を使用したカスタム交換シンボルの作成について説明します。 特に、人気の Finam ウェブサイトからの為替相場を使用します。 この記事で考えられるもう1つのオプションは、カスタムシンボルの作成に使用するテキストファイルを任意の形式で動作させる方法です。 これにより、任意の財務銘柄とデータソースを操作できるようになります。 カスタムシンボルを作成した後、MetaTrader5 ストラテジーテスターのすべての関数を使用して、交換ツールのトレードアルゴリズムをテストすることができます。
OpenCL を使用したローソク足パターンのテスト
OpenCL を使用したローソク足パターンのテスト

OpenCL を使用したローソク足パターンのテスト

この記事では、OpenCL ローソク足パターンテスターを "1 分 OHLC " モードで実装するアルゴリズムについて説明します。 また、高速かつ低速の最適化モードで起動したビルトインストラテジーテスターとの速度を比較します。
ディープニューラルネットワーク(その7)ニューラルネットワークのアンサンブル: スタッキング
ディープニューラルネットワーク(その7)ニューラルネットワークのアンサンブル: スタッキング

ディープニューラルネットワーク(その7)ニューラルネットワークのアンサンブル: スタッキング

アンサンブルの構築を続けます。今回は、以前に作成したバギングアンサンブルに、訓練可能な結合器、つまりディープニューラルネットワークが追加されます。ニューラルネットワークの1つは、刈り込み後に7つの最良アンサンブル出力を組み合わせます。2つ目はアンサンブルの500個の出力をすべて入力として取り込み、刈り込んで結合します。ニューラルネットワークは、Python用のKeras/TensorFlowパッケージを使用して構築されます。このパッケージの特徴には簡単に触れます。テストが実行されて、バギングアンサンブルとスタッキングアンサンブルの分類品質が比較されます。
ディープニューラルネットワーク(その8)バギングアンサンブルの分類品質の向上
ディープニューラルネットワーク(その8)バギングアンサンブルの分類品質の向上

ディープニューラルネットワーク(その8)バギングアンサンブルの分類品質の向上

本稿では、バギングアンサンブルの分類品質を高めるために使用できる3つの方法を検討し、その効率を評価します。ELMニューラルネットワークのハイパーパラメータと後処理パラメータの最適化の効果が評価されます。
デルタインジケータの例によるボリュームコントロールを特徴とする株式インジケータの開発
デルタインジケータの例によるボリュームコントロールを特徴とする株式インジケータの開発

デルタインジケータの例によるボリュームコントロールを特徴とする株式インジケータの開発

この記事では、CopyTicks() および CopyTicksRange() 関数を使用して、実際のボリュームに基づいた株価インジケータを開発するアルゴリズムを扱います。 このようなインジケータの開発については、リアルタイムでの操作とストラテジーテスターにおける細かい側面も説明されています。
MQLベースのエキスパートアドバイザとデータベースの統合 (SQL server、.NET、および C#)
MQLベースのエキスパートアドバイザとデータベースの統合 (SQL server、.NET、および C#)

MQLベースのエキスパートアドバイザとデータベースの統合 (SQL server、.NET、および C#)

この記事では、MQL5 ベースのEAに対して Microsoft SQL server データベースサーバーを使用する方法について説明します。 DLL からの関数のインポートが使用します。 DLL は、Microsoft .NET プラットフォームと C# 言語を使用して作成します。 この記事で使用するメソッドは、マイナーな調整があり、MQL4で書かれているEAに適しています。
950のウェブサイトがメタクオーツの経済指標カレンダーをブロードキャスト
950のウェブサイトがメタクオーツの経済指標カレンダーをブロードキャスト

950のウェブサイトがメタクオーツの経済指標カレンダーをブロードキャスト

このウィジェットによって、ウェブサイトには世界最大経済の500の指標と指数の詳細なリリーススケジュールが提供され、トレーダーは、ウェブサイトのメインコンテンツに加えて、説明やグラフとともに、重要なイベントの最新情報をすばやく受け取ることができます。
ディープニューラルネットワーク(その4)ニューラルネットワーク分類器のアンサンブル: バギング
ディープニューラルネットワーク(その4)ニューラルネットワーク分類器のアンサンブル: バギング

ディープニューラルネットワーク(その4)ニューラルネットワーク分類器のアンサンブル: バギング

本稿では、バギング構造を持つニューラルネットワークのアンサンブルを構築および訓練する方法について説明します。また、アンサンブルを構成する個々のニューラルネットワーク分類器の超パラメータ最適化の特性も特定されます。このシリーズの前の記事で得られた最適化ニューラルネットワークの品質は、作成されたニューラルネットワークのアンサンブルの品質と比較されます。アンサンブルの分類の質をさらに向上させる可能性が考慮されます。
preview
トレードロボットをオーダーするための要件定義を作成する方法

トレードロボットをオーダーするための要件定義を作成する方法

自分自身のトレーディングストラテジーを使用してトレードしていますか。 システムトレードのルールをアルゴリズムとして正式に記述できる場合は、自動化されたEAにトレードを委託することをお勧めします。 ロボットは、人間の弱点であるところの睡眠や食品を必要としません。 この記事では、フリーランスのサービスでトレードロボットを発注する際の要件定義の作成方法を示します。
ZUP-Pesavento パターンと普遍的なジグザグ。 パターンの検索
ZUP-Pesavento パターンと普遍的なジグザグ。 パターンの検索

ZUP-Pesavento パターンと普遍的なジグザグ。 パターンの検索

ZUP インジケータープラットフォームでは、既に設定されている複数の既知のパターンを検索できます。 これらのパラメータは、要件に合わせて編集できます。 また、ZUP グラフィカルインターフェイスを使用して新しいパターンを作成し、そのパラメータをファイルに保存することもできます。 その後、 新しいパターンがチャート上で見つけることができるかどうか、すぐにチェックすることができます。
preview
任意の複雑さのレベルのグラフィカルなパネルを作成する方法

任意の複雑さのレベルのグラフィカルなパネルを作成する方法

この記事では、CAppDialog クラスに基づいてパネルを作成する方法と、パネルにコントロールを追加する方法について詳しく説明します。 パネルの構造とオブジェクトの継承を示すスキームを提供します。 この記事では、イベントの処理方法、および依存コントロールへの配信方法についても説明します。 その他の例では、サイズや背景色などのパネルパラメータを編集する方法を示します。
自己キャッシング指標の速度比較
自己キャッシング指標の速度比較

自己キャッシング指標の速度比較

本稿では、MQL5指標への古典的なアクセスと、代替のMQL4形式のアクセス法を比較します。指標へのMQL4形式のアクセスについては何種類かが考慮されます。MQL5コア内の指標ハンドルも考慮して分析されます。
ディープニューラルネットワーク(その5)DNNハイパーパラメータのベイズ最適化
ディープニューラルネットワーク(その5)DNNハイパーパラメータのベイズ最適化

ディープニューラルネットワーク(その5)DNNハイパーパラメータのベイズ最適化

本稿では、様々な訓練の変形によって得られたディープニューラルネットワークのハイパーパラメータにベイズ最適化を適用する可能性について検討します。様々な訓練の変形における最適なハイパーパラメータを有するDNNの分類の質が比較されます。DNN最適ハイパーパラメータの有効性の深さは、フォワードテストで確認されています。分類の質を向上させるための方向性が特定されています。
トレーダーのハック: 定義と ForEach のブレンド (#define)
トレーダーのハック: 定義と ForEach のブレンド (#define)

トレーダーのハック: 定義と ForEach のブレンド (#define)

この記事は、現在MQL4でコーディングしていて、MQL5に切り替えたいとは思っていない人のためのものです。 今回はMQL4のスタイルでコードを書く方法を模索していきます。 #define プリプロセッサのマクロ置換を見ていきます。
メタトレーダー5のカスタムニュースフィードを作成する
メタトレーダー5のカスタムニュースフィードを作成する

メタトレーダー5のカスタムニュースフィードを作成する

この記事では、ニュースの種類とまたその情報元の面でより多くのオプションを提供しています。柔軟なニュースフィードを作成する汎用性を考察します。 この記事では、web API を MetaTrader5 ターミナルと統合する方法について説明します。
制御された最適化: シミュレーティットアニーリング
制御された最適化: シミュレーティットアニーリング

制御された最適化: シミュレーティットアニーリング

MetaTrader5トレーディングプラットフォームのストラテジーテスターは、パラメータと遺伝的アルゴリズムの完全な検索、つまり、2 つの最適化オプションのみを提供します。 この記事では、トレーディング戦略を最適化するための新しいメソッドを提案します (シミュレーティットアニーリング)。 このメソッドのアルゴリズム、実装、およびEAへの統合を考察します。 開発したアルゴリズムは移動平均 EA でテストします。
トレーダーのライフハック: インジケーターで作られたファストフード
トレーダーのライフハック: インジケーターで作られたファストフード

トレーダーのライフハック: インジケーターで作られたファストフード

MQL5 に新たに切り替えた場合、この記事は役に立つでしょう。 まず、インジケーターデータとシリーズへのアクセスは、通常の MQL4 スタイルで行われます。 次に、このシンプルさを MQL5 に実装します。 すべての関数は、可能な限り明確であり、ステップバイステップのデバッグに最適です。
有望なシグナルの自動選択
有望なシグナルの自動選択

有望なシグナルの自動選択

この記事では、MetaTrader5 プラットフォームのトレードシグナルの分析に専念し、購読者アカウントでのトレードオペレーションの自動実行が可能になります。 また、この記事では、潜在的に有望なトレードシグナルを検索するツールを開発し、ターミナルから直接行います。
戦略バランス曲線の品質評価としての R 乗
戦略バランス曲線の品質評価としての R 乗

戦略バランス曲線の品質評価としての R 乗

この記事では、カスタム最適化基準R乗の構築について扱います。 この基準は、戦略のバランス曲線の品質を推定し、安定した戦略を構築するために使うことができます。 今回は、このメトリックのプロパティと品質の推定に使用される、構造と統計的手法について説明します。
クロスプラットフォームEA: CExpertAdvisor と CExpertAdvisors クラス
クロスプラットフォームEA: CExpertAdvisor と CExpertAdvisors クラス

クロスプラットフォームEA: CExpertAdvisor と CExpertAdvisors クラス

この記事では、クロスプラットフォームのEAについて扱っています。主にクラス CExpertAdvisor と CExpertAdvisors は、この記事で説明した他のすべてのコンポーネントのコンテナとして機能します。
クロスプラットフォームEA: カスタムストップ、ブレイクイーブン、トレーリング
クロスプラットフォームEA: カスタムストップ、ブレイクイーブン、トレーリング

クロスプラットフォームEA: カスタムストップ、ブレイクイーブン、トレーリング

この記事では、クロスプラットフォームEAでのカスタムストップレベルの設定方法について説明します。 また、時間の経過とともにストップレベルを設定するメソッドについても説明します。
ディープニューラルネットワーク(その4)ニューラルネットワークモデルの作成、訓練、テスト
ディープニューラルネットワーク(その4)ニューラルネットワークモデルの作成、訓練、テスト

ディープニューラルネットワーク(その4)ニューラルネットワークモデルの作成、訓練、テスト

本稿では、darchパッケージ(v.0.12.0)の新しい機能について考察し、異なるデータタイプ、構造及び訓練シーケンスを有するディープニューラルネットワーク訓練を説明します。訓練結果も含まれています。
クロスプラットフォームEA: ストップ
クロスプラットフォームEA: ストップ

クロスプラットフォームEA: ストップ

この記事では、2つのプラットフォームMetaTrader4とMetaTrader5との互換性を確保するために、EAのストップの実装について説明します。
ディープニューラルネットワーク(その3)サンプル選択と次元削減
ディープニューラルネットワーク(その3)サンプル選択と次元削減

ディープニューラルネットワーク(その3)サンプル選択と次元削減

本稿は、ディープニューラルネットワークに関する一連の記事の続きです。ここでは、ニューラルネットワークの訓練データの準備に当たってのサンプルの選択(ノイズ除去)、入力データの次元数の削減、及びデータセットの訓練/検証/テストセットへの分割を検討します。
ディープニューラルネットワーク(その2)予測変数の変換と選択
ディープニューラルネットワーク(その2)予測変数の変換と選択

ディープニューラルネットワーク(その2)予測変数の変換と選択

このディープニューラルネットワークシリーズ第2稿では、モデルを訓練するためのデータを準備する過程で予測変数の変換と選択を検討します。
ターミナル間のデータ交換にクラウドストレージサービスを使用
ターミナル間のデータ交換にクラウドストレージサービスを使用

ターミナル間のデータ交換にクラウドストレージサービスを使用

クラウド技術の普及が進んでいます。 今日では、有料と無料のストレージサービスから選択することができます。 トレードで使用することは可能でしょうか? 本稿では, クラウドストレージサービスを利用してターミナル間でのデータ交換を行う技術を提案します。
MetaTrader5の任意のシンボルでトレーディングアイデアをテスト!
MetaTrader5の任意のシンボルでトレーディングアイデアをテスト!

MetaTrader5の任意のシンボルでトレーディングアイデアをテスト!

カスタムシンボルを作成すると、トレーディングシステムと金融相場分析に役立ちます。 今日ではトレーダーは、無数のチャートやテストトレード戦略をプロットすることができます。
ユニバーサルEA: シンボルプロパティへのアクセス (その 8)
ユニバーサルEA: シンボルプロパティへのアクセス (その 8)

ユニバーサルEA: シンボルプロパティへのアクセス (その 8)

このテーマの8番目のパートは、任意のトレーディングツールへアクセスする特殊なオブジェクト CSymbol クラスの説明をします。 EAで使用する場合、このクラスはEAのプログラミングを簡素化し、その関数を拡張することができ、シンボルプロパティのセットを提供します。
ディープニューラルネットワーク(その1)データの準備
ディープニューラルネットワーク(その1)データの準備

ディープニューラルネットワーク(その1)データの準備

この一連の記事では、取引を含んだ多くの分野で応用されているディープニューラルネットワーク(DNN)の探索を続けます。ここでは、実践的な実験によって新しい方法や概念をテストするとともにこのテーマの新しい次元を探求する予定です。シリーズの最初の記事は、DNNのデータを準備することを目的としています。
MQL5ソースコードに基づくドキュメントの作成
MQL5ソースコードに基づくドキュメントの作成

MQL5ソースコードに基づくドキュメントの作成

本稿では、必要なタグの自動マークアップから始まるMQL5コードのドキュメントの作成について考察し、Doxygenソフトウェアの使い方と正しい設定の仕方、html、HtmlHelp、PDFなどのさまざまな形式で結果を受け取る方法についても説明します。
クロスプラットフォームEA: タイムフィルタ
クロスプラットフォームEA: タイムフィルタ

クロスプラットフォームEA: タイムフィルタ

この記事では、クロスプラットフォームEAによるさまざまな時間フィルタリングメソッドの実装について説明します。 時間フィルタクラスは、特定の時間が一定の時間構成設定に該当するかどうかをチェックします。
クロスプラットフォームEA: マネーマネジメント
クロスプラットフォームEA: マネーマネジメント

クロスプラットフォームEA: マネーマネジメント

この記事では、クロスプラットフォームEAの マネーマネジメントメソッドの実装について説明します。 マネーマネジメントクラスは、EAによってエントリーされる次のトレードに使用するロットサイズの計算を担当します。