Gráficos en la biblioteca DoEasy (Parte 74): Elemento gráfico básico sobre la clase CCanvas
En esta ocasión, vamos a revisar el concepto de construcción de objetos gráficos del artículo anterior y a preparar una clase básica para todos los objetos gráficos de la biblioteca creados sobre la base de la clase CCanvas de la Biblioteca Estándar.
Gráficos en la biblioteca DoEasy (Parte 73): Objeto de formulario del elemento gráfico
En el presente artículo, iniciaremos un nuevo apartado del trabajo con gráficos. En esta ocasión, vamos a crear el objeto de estado del ratón, el objeto básico de todos los elementos gráficos y la clase de objeto de formulario de los elementos gráficos de la biblioteca.
Otras clases en la biblioteca DoEasy (Parte 72): Seguimiento y registro de parámetros de los objetos de gráfico en la colección
En el presente artículo, finalizaremos el trabajo con las clases de los objetos de gráfico y sus colecciones. Implementaremos el seguimiento automático del cambio de las propiedades de los gráficos y sus ventanas, y también el almacenamiento de los parámetros en las propiedades del objeto. Estas mejoras nos permitirán en el futuro crear una funcionalidad de eventos para la colección de gráficos al completo.
Consejos de un programador profesional (parte II): Organizando el almacenamiento y el intercambio de parámetros entre el experto, los scripts y los programas externos
Consejos de un programador profesional sobre métodos, técnicas y herramientas auxiliares para facilitar la programación. En esta ocasión, hablaremos de los parámetros que podemos restaurar tras reiniciar (cerrar) el terminal. Todos los ejemplos son en realidad trozos del código operativo del proyecto Cayman del propio autor.
Otras clases en la biblioteca DoEasy (Parte 71): Eventos de la colección de objetos de gráfico
En el presente artículo, crearemos la funcionalidad necesaria para monitorear algunos eventos de los objetos del gráfico: añadir y eliminar gráficos de símbolos, añadir y eliminar subventanas en el gráfico, y también añadir/eliminar/cambiar indicadores en las ventanas del gráfico.
Otras clases en la biblioteca DoEasy (Parte 70): Ampliación de la funcionalidad y actualización automática de la colección de objetos de gráfico
En este artículo, ampliaremos la funcionalidad de los objetos de gráfico, organizaremos la navegación por los gráficos, crearemos capturas de pantalla, y también guardaremos plantillas y las aplicaremos a los gráficos. Asimismo, implementaremos la actualización automática de la colección de objetos de gráfico, sus ventanas y los indicadores en ellas.
Consejos de un programador profesional (parte I): guardado, depuración y compilación de códigos. Trabajando con proyectos y logs
Consejos de un programador profesional sobre métodos, técnicas y herramientas auxiliares para facilitar la programación.
Otras clases en la biblioteca DoEasy (Parte 69): Clases de colección de objetos de gráfico
A partir de este artículo, comenzaremos el desarrollo de una colección de clases de objetos de gráfico que almacenará una colección de lista de objetos de gráfico con sus subventanas y los indicadores en ellas, y nos permitirá trabajar con cualquier gráfico seleccionado y sus subventanas, o bien directamente con una lista de varios gráficos al mismo tiempo.
Otras clases en la biblioteca DoEasy (Parte 68): Clase de objeto de ventana de gráfico y clases de objetos de indicador en la ventana del gráfico
En este artículo, seguiremos desarrollando la clase de objeto de gráfico. Para ello, le añadiremos una lista de objetos de ventana de gráfico, en la que, a su vez, estarán disponibles las listas de indicadores colocados en ellos.
Otras clases en la biblioteca DoEasy (Parte 67): Clase de objeto de gráfico
En este artículo, crearemos una clase de objeto de gráfico (de un gráfico de un instrumento comercial) y modificaremos la clase de colección de objetos de señal mql5 para que cada objeto de señal guardado en la colección actualice también todos sus parámetros al actualizarse la lista.
Redes neuronales: así de sencillo (Parte 13): Normalización por lotes (Batch Normalization)
En el artículo anterior, comenzamos a analizar varios métodos para mejorar la calidad del aprendizaje de la red neuronal. En este artículo, proponemos al lector continuar con este tema y analizar la normalización por lotes de los datos, un enfoque muy interesante.
Otras clases en la biblioteca DoEasy (Parte 66): Clases de Colección de Señales MQL5.com
En este artículo, crearemos una clase de colección de señales del Servicio de señales de MQL5.com con funciones para gestionar las señales suscritas, y también modificaremos la clase del objeto de instantánea de la profundidad de mercado para mostrar el volumen total de la profundidad de mercado de compra y venta.
Redes neuronales: así de sencillo (Parte 12): Dropout
A la hora de proseguir el estudio de las redes neuronales, probablemente merezca la pena prestar un poco de atención a los métodos capaces de aumentar su convergencia durante el entrenamiento. Existen varios de estos métodos. En este artículo, proponemos al lector analizar uno de ellos: el Dropout (dilución).
Técnicas útiles y exóticas para el comercio automático
En el presente artículo, mostraremos algunos trucos muy útiles e interesantes para comerciar de forma automatizada. Alguna de estas técnicas podría resultar familiar al lector, o quizá no, pero intentaremos exponer los métodos más interesantes y explicar por qué merece la pena utilizarlos. Y lo que es más importante: mostraremos lo que pueden hacer en la práctica. Vamos a escribir asesores expertos y comprobar todas las técnicas descritas en la historia de cotizaciones.
Trabajando con los precios y Señales en la biblioteca DoEasy (Parte 65): Colección de la profundidad de mercado y clase para trabajar con las Señales MQL5.com
En el presente artículo, crearemos una clase de colección de profundidad de mercado para todos los símbolos y comenzaremos a desarrollar la funcionalidad necesaria para trabajar con el servicio de señales de MQL5.com. Para ello, crearemos una clase de objeto de señal.
Redes neuronales: así de sencillo (Parte 10): Multi-Head Attention (atención multi-cabeza)
Ya hemos hablado con anterioridad del mecanismo de auto-atención (self-attention) en las redes neuronales. En la práctica, en las arquitecturas de las redes neuronales modernas, se usan varios hilos de auto-atención paralelos para buscar diversas dependencias entre los elementos de la secuencia. Vamos a ver la implementación de este enfoque y evaluar su influencia en el rendimiento general de la red.
Trabajando con los precios en la biblioteca DoEasy (Parte 64): Profundidad del mercado, clases del objeto de instantánea y del objeto de serie de instantáneas del DOM
En este artículo, vamos a crear dos clases: la clase del objeto de instantánea del DOM y la clase del objeto de serie de instantáneas del DOM, además, simularemos la creación de la serie de datos del DOM.
Trabajando con los precios en la biblioteca DoEasy (Parte 63): Profundidad del mercado, clase de orden abstracta de la Profundidad del mercado
En el presente artículo, empezaremos a desarrollar la funcionalidad para trabajar con la Profundidad del mercado. Crearemos la clase del objeto de una orden abstracta de la Profundidad del mercado y sus clases herederas.
Redes neuronales: así de sencillo (Parte 9): Documentamos el trabajo realizado
Ya hemos recorrido un largo camino y el código de nuestra biblioteca ha crecido de manera considerable. Resulta difícil monitorear todas las conexiones y dependencias. Y, obviamente, antes de proseguir con el desarrollo del proyecto, necesitaremos documentar el trabajo ya realizado y actualizar la documentación en cada paso posterior. Una documentación debidamente redactada nos ayudará a ver la integridad de nuestro trabajo.
Trabajando con los precios en la biblioteca DoEasy (Parte 62): Actualización de las series de tick en tiempo real, preparando para trabajar con la Profundidad del mercado
En este artículo, vamos a desarrollar la actualización de la colección de datos de tick en tiempo real, y prepararemos una clase del objeto de símbolo para manejar la Profundidad del mercado, con la que empezaremos a trabajar a partir del siguiente artículo.
Trabajando con los precios en la biblioteca DoEasy (Parte 61): Colección de series de tick de los símbolos
Dado que el programa puede utilizar varios símbolos, entonces, es necesario crear su propia lista para cada uno de estos símbolos. En este artículo, vamos a combinar estas listas en una colección de datos de tick. En realidad, se trata de una lista común a base de la clase de la matriz dinámica de punteros a las instancias de la clase CObject y sus herederos de la Biblioteca estándar.
Trabajando con los precios en la biblioteca DoEasy (Parte 60): Lista de serie de datos de tick del símbolo
En este artículo, vamos a crear una lista para almacenar los datos de tick del símbolo único, después, verificaremos su creación y obtención de los datos requeridos en el Asesor Experto. Dichas listas —siendo aplicada cada una de ellas para cada símbolo usado— van a componer luego la colección de datos de tick.
Utilizando hojas de cálculo para construir estrategias comerciales
El artículo describe los principios y técnicas básicos que nos permiten analizar cualquier estrategia usando hojas de cálculo: Excel, Calc, Google. Asimismo, hemos comparado los resultados con el simulador de MetaTrader 5.
Redes neuronales: así de sencillo (Parte 8): Mecanismos de atención
En artículos anteriores, ya hemos puesto a prueba diferentes variantes para organizar las redes neuronales, incluyendo las redes convolucionales, adoptadas de algoritmos de procesamiento de imágenes. En el presente artículo, les proponemos analizar los mecanismos de atención, cuya aparición impulsó el desarrollo de los modelos de lenguaje.
Perceptrón Multicapa y Algoritmo de Retropropagación
Recientemente, al aumentar la popularidad de estos dos métodos, se han desarrollado tantas bibliotecas en Matlab, R, Python, C++, etc., que reciben el conjunto de entrenamiento como entrada y construyen automáticamente una red neuronal apropiada para el supuesto problema. Vamos a entender cómo funciona un tipo básico de red neural, (perceptrón de una sola neurona y perceptrón multicapa), y un fascinante algoritmo encargado del aprendizaje de la red, (gradiente descendente y retropropagación). Estos modelos de red servirán como base para los modelos más complejos que existen hoy en día.
WebSocket para MetaTrader 5
Antes de que aparecieran las funciones de red en la API MQL5 actualizada, las aplicaciones MetaTrader tenían una capacidad limitada para conectarse e interactuar con servicios basados en el protocolo WebSocket. Ahora, la situación es distinta. En este artículo, analizaremos la implementación de la biblioteca WebSocket en el MQL5 puro. Asimismo, presentaremos una breve descripción del protocolo WebSocket y una guía paso a paso sobre el uso de la biblioteca resultante.
Aplicación práctica de las redes neuronales en el trading. Python (Parte I)
En este artículo, analizaremos paso a paso la implementación de un sistema comercial basado en la programación de redes neuronales profundas en Python. Para ello, usaremos la biblioteca de aprendizaje automático TensorFlow, desarrollada por Google. Para describir las redes neuronales, utilizaremos la biblioteca de Keras.
Redes neuronales: así de sencillo (Parte 6): Experimentos con la tasa de aprendizaje de la red neuronal
Ya hemos hablado sobre algunos tipos de redes neuronales y su implementación. En todos los casos, hemos usado el método de descenso de gradiente para entrenar las redes neuronales, lo cual implica la elección de una tasa de aprendizaje. En este artículo, queremos mostrar con ejemplos lo importante que resulta elegir correctamente la tasa de aprendizaje, y también su impacto en el entrenamiento de una red neuronal.
Trabajando con los precios en la biblioteca DoEasy (Parte 59): Objeto para almacenar los datos de un tick
A partir de este artículo, procedemos a la creación de la funcionalidad de la biblioteca para trabajar con los datos de precios. Hoy, crearemos una clase del objeto que va a almacenar todos los datos de los precios que llegan con un tick.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 58): Series temporales de los datos de búferes de indicadores
En conclusión del tema de trabajo con series temporales, vamos a organizar el almacenamiento, la búsqueda y la ordenación de los datos que se guardan en los búferes de indicadores. En el futuro, eso nos permitirá realizar el análisis a base de los valores de los indicadores que se crean a base de la biblioteca en nuestros programas. El concepto general de todas las clases de colección de la biblioteca permite encontrar fácilmente los datos necesarios en la colección correspondiente, y por tanto, lo mismo también será posible en la clase que vamos a crear hoy.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 57): Objeto de datos del búfer de indicador
En este artículo, vamos a desarrollar el objeto que incluirá todos los datos de un búfer de un indicador. Estos objetos serán necesarios para almacenar los datos de serie de los búferes de indicadores, a través de los cuales será posible ordenar y comparar los datos de los búferes de cualquier indicador, así como otros datos parecidos.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 56): Objeto del indicador personalizado, obtención de datos de parte de los objetos de indicador en la colección
En el presente artículo, vamos a considerar la creación de un objeto del indicador personalizado para usarlo en los asesores expertos. Mejoraremos un poco las clases de la biblioteca y escribiremos los métodos para obtener los datos de parte de los objetos de indicador en los expertos.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 55): Clase de colección de indicadores
En este artículo, seguiremos desarrollando las clases de los objetos de indicador y sus colecciones. Crearemos la descripción para cada objeto de indicador y ajustaremos la clase de colección para un almacenamiento y obtención correctos de los objetos de indicador desde la lista de colección.
¿Cómo ganar $1 000 000 en el trading algorítmico? ¡En los servicios de MQL5.com!
Todo tráder llega al mercado con el objetivo de ganar su primer millón de dólares. ¿Cómo podemos conseguirlo sin grandes riesgos y sin capital inicial? Los servicios MQL5 ofrecen estas posibilidades a los desarrolladores y tráders en cualquier país del mundo.
Redes neuronales: así de sencillo (Parte 3): Redes convolucionales
Continuando el tema de la redes neuronales, proponemos al lector analizar las redes neuronales convolucionales. Este tipo de redes neuronales ha sido desarrollado para buscar objetos en una imagen. Asimismo, analizaremos cómo nos pueden ayudar al operar en los mercados financieros.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 52): Concepto multiplataforma de indicadores estándar de período y símbolo múltiples de búfer único
En el presente artículo, vamos a considerar la creación del indicador estándar de período y símbolo múltiples Accumulation/Distribution. Vamos a mejorar un poco las clases de la biblioteca en cuanto a los indicadores para que los programas escritos para la plataforma obsoleta MetaTrader 4 y basados en la biblioteca en cuestión puedan funcionar sin problema cuando los usamos en MetaTrader 5.
Redes neuronales: así de sencillo (Parte 2): Entrenamiento y prueba de la red
En el presente artículo, proseguiremos nuestro estudio de las redes neuronales, iniciado en el artículo anterior, y analizaremos un ejemplo de uso en los asesores de la clase CNet que hemos creado. Asimismo, analizaremos dos modelos de red neuronal que han mostrado resultados semejantes tanto en su tiempo de entrenamiento, como en la precisión de sus predicciones.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 49): Indicadores estándar de período, símbolo y búfer múltiples
En el presente artículo, vamos a mejorar las clases de la biblioteca para tener la posibilidad de crear los indicadores estándar de período y símbolo múltiples que requieren varios búferes de indicador para visualizar sus datos.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 51): Indicadores estándar compuestos de período y símbolo múltiples
En este artículo, vamos a finalizar el desarrollo de indicadores estándar de período y símbolo múltiples. A base del indicador Ichimoku Kinko Hyo, vamos a analizar la creación de los indicadores personalizados de composición compleja que disponen de los búferes dibujados auxiliares para la visualización de los datos en el gráfico.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 50): Indicadores estándar de período y símbolo múltiples con desplazamiento
En el artículo de hoy, vamos a mejorar los métodos de la biblioteca para una representación correcta de los indicadores de período y símbolo múltiples cuyas líneas se muestran en el gráfico del símbolo actual con desplazamiento que se establece en los ajustes. Además, acondicionaremos el contenido dentro de los métodos de trabajo con los indicadores estándar y guardaremos el código sobrante del indicador final en la parte de la biblioteca.