The market is a controlled dynamic system. - page 121
You are missing trading opportunities:
- Free trading apps
- Over 8,000 signals for copying
- Economic news for exploring financial markets
Registration
Log in
You agree to website policy and terms of use
If you do not have an account, please register
A few introductory words about the beautiful UDS theory.
.
.
Then there are some wonderful mathematical constructions. But I don't think that's appropriate here, so I'll stop ;)
Самый прекрасный опыт, какой мы только можем испытать, — это опыт ощущения тайны. Это фундаментальное чувство, которое стоит у истоков подлинного искусства и подлинной науки. Любой, кому это чувство незнакомо и кто не может больше задаваться вопросами, не может восхищаться, все равно что мертв, и глаза его застилает туман.
Albert Einstein
It's all worked out. Now take the check AND = H +P
See for yourself. What we are interested in is the initial section, not their asymptotics. And what prevents you from taking the sum... (the error is hidden in the transformations).
So I'm going to use the sum -- as in the original idea.
I want to do a more advanced analysis system, so it will take a bit longer.
See for yourself. What we are interested in is the initial section, not their asymptotics. And what prevents you from taking the sum... (the error is hidden in the transformations).
So I'm going to use the sum -- as in the original idea.
I want to do a more advanced analysis system, so it will take a bit longer.
How do you calculate the integrals? Please give the numerical values of I, P and H at the point of greatest divergence and the value of t at that.
Try to calculate them like this, for example, with t=2:
I = GAMMARASP(t/t;n;1;1) = GAMMARASP(2/0.577292852;2.954197002;1;1)=0.682256914
P = GAMMARASP(t/t;n+1;1;1) = GAMMARASP(2/0.577292852;3.954197002;1;1)=0.465336551
H = GAMMARASP(t/t;n+1;1;0) = GAMMARASP(2/0.577292852;3.954197002;1;0)=0.216920364
N + N = 0.465336551 + 0.216920364 = 0.682256915
Where do you see the discrepancy?
How do you calculate the integrals? Please give the numerical values of I, P and H at the point of greatest divergence and the value of t at that.
Try to calculate them like this, for example, with t=2:
I = GAMMARASP(t/t;n;1;1) = GAMMARASP(2/0.577292852;2.954197002;1;1)=0.682256914
P = GAMMARASP(t/t;n+1;1;1) = GAMMARASP(2/0.577292852;3.954197002;1;1)=0.465336551
AND = GAMMARASP(t/t;n+1;1;0) = GAMMARASP(2/0.577292852;3.954197002;1;0)=0.216920364
N + I = 0.465336551 + 0.216920364 = 0.682256915
Where do you see the discrepancy?
You've got something mixed up.