Omega J Msigwa / Profil
- Information
4 Jahre
Erfahrung
|
7
Produkte
|
205
Demoversionen
|
8
Jobs
|
0
Signale
|
0
Abonnenten
|
My favorite programming language is Python, a versatile and powerful tool that I have mastered to a tee. I have harnessed the capabilities of Python in various domains, including backend web development, automation, and much more. Whether it's crafting elegant web solutions, streamlining processes through automation, or delving into data analysis, Python is my trusted companion in these endeavors.
One of my most significant achievements is my in-depth understanding of MQL5, which I've cultivated since 2019. This experience has made me a seasoned professional in algorithmic trading, equipped with the knowledge and skills to create sophisticated trading strategies that can maximize returns and minimize risks. The world of finance and trading is ever-evolving, and I ensure that I stay at the forefront of these developments to offer top-notch algorithmic trading solutions.
For a closer look at my coding prowess and contributions, feel free to follow me on GitHub: https://github.com/MegaJoctan
I take pride in my open-source projects and the code I share with the programming community.
DISCORD: https://discord.gg/2qgcadfgrx
TELEGRAM: https://t.me/omegafx_co
If you're looking for a skilled collaborator for your Machine Learning project, look no further! You can hire me by opening this link: https://www.mql5.com/en/job/new?prefered=omegajoctan
I bring a wealth of experience in programming and a deep appreciation for the nuances of machine learning.
But that's not all – I also offer a range of trading products that cater to both beginners and experts. Explore my catalog of free and paid trading products here: My Trading Products. These meticulously crafted tools can help you navigate the world of algorithmic trading more effectively and profitably.
Thank you for taking the time to learn more about me. I'm always eager to connect with fellow developers, traders, and enthusiasts. Let's collaborate and innovate together!
Data Mining ist für Datenwissenschaftler und Händler von entscheidender Bedeutung, da die Daten oft nicht so einfach sind, wie wir denken. Das menschliche Auge kann die kleinen zugrundeliegenden Muster und Beziehungen im Datensatz nicht erkennen, vielleicht kann uns der Algorithmus K-Means dabei helfen. Finden wir es heraus...
Im Gegensatz zur linearen Regression ist die polynome Regression ein flexibles Modell, das darauf abzielt, Aufgaben besser zu erfüllen, die das lineare Regressionsmodell nicht bewältigen kann. Lassen Sie uns herausfinden, wie man polynome Modelle in MQL5 erstellt und etwas Positives daraus macht.
Bevor wir fertig sind, müssen wir noch einige kleinere Dinge im Zusammenhang mit dem neuronalen Feed-Forward-Netz behandeln, unter anderem den Entwurf. Sehen wir uns an, wie wir ein flexibles neuronales Netz für unsere Eingaben, die Anzahl der verborgenen Schichten und die Knoten für jedes Netz aufbauen und gestalten können.
Viele Menschen lieben sie, aber nur wenige verstehen die gesamte Funktionsweise neuronaler Netze. In diesem Artikel werde ich versuchen, alles, was hinter den verschlossenen Türen einer mehrschichtigen Feed-Forward-Wahrnehmung vor sich geht, in einfacher Sprache zu erklären.
Der Gradientenverfahren spielt eine wichtige Rolle beim Training neuronaler Netze und vieler Algorithmen des maschinellen Lernens. Es handelt sich um einen schnellen und intelligenten Algorithmus, der trotz seiner beeindruckenden Arbeit von vielen Datenwissenschaftlern immer noch missverstanden wird - sehen wir uns an, worum es geht.
Entscheidungsbäume imitieren die Art und Weise, wie Menschen denken, um Daten zu klassifizieren. Schauen wir mal, wie man so einen Baum erstellt und ihn zur Klassifizierung und Vorhersage einiger Daten verwenden kann. Das Hauptziel des Entscheidungsbaum-Algorithmus ist es, die Daten mit Fremdanteilen und die reinen oder knotennahen Daten abzutrennen.
In diesem Artikel werde ich versuchen, unser logistisches Modell zu verwenden, um den Börsencrash auf der Grundlage der Fundamentaldaten der US-Wirtschaft vorherzusagen. NETFLIX und APPLE sind die Aktien, auf die wir uns konzentrieren werden, wobei wir die früheren Börsencrashs von 2019 und 2020 nutzen werden, um zu sehen, wie unser Modell in der aktuellen Krise abschneiden wird.
Matrix is the foundation of complex trading algorithms as it helps you perform complex calculations effortlessly and without the need for too much computation power, It's no doubt that matrix has made possible many of the calculations in modern computers as we all know that bits of information are stored in array forms in our computer memory RAM, Using some of the functions in this library I was able to create machine learning robots that could take on a large number of inputs To use this
Diesmal werden unsere Modelle mit Hilfe von Matrizen erstellt, was uns eine gewisse Flexibilität ermöglicht, während wir gleichzeitig leistungsstarke Modelle erstellen können, die nicht nur mit fünf unabhängigen Variablen, sondern auch mit vielen Variablen umgehen können, solange wir innerhalb der Berechnungsgrenzen eines Computers bleiben.
Die Klassifizierung von Daten ist für einen Algo-Händler und einen Programmierer von entscheidender Bedeutung. In diesem Artikel werden wir uns auf einen logistischen Klassifizierungsalgorithmus konzentrieren, der uns wahrscheinlich helfen kann, die Ja- oder Nein-Stimmen, die Höhen und Tiefen, Käufe und Verkäufe zu identifizieren.
Es ist an der Zeit, dass wir als Händler unsere Systeme und uns selbst darauf trainieren, Entscheidungen auf der Grundlage von Zahlen zu treffen. Nicht unsere Augen oder wenn unser Bauchgefühl uns glauben macht, dass die Welt sich in diese Richtung bewegt, also lassen Sie uns senkrecht zur Richtung der Welle gehen.
Möchten Sie ein erfolgreicher Freelance-Entwickler auf MQL5 werden? Wenn die Antwort ja lautet, ist dieser Artikel genau das Richtige für Sie.