Omega J Msigwa / プロファイル
- 情報
5+ 年
経験
|
8
製品
|
211
デモバージョン
|
10
ジョブ
|
0
シグナル
|
0
購読者
|
My favorite programming language is Python, a versatile and powerful tool that I have mastered to a tee. I have harnessed the capabilities of Python in various domains, including backend web development, automation, and much more. Whether it's crafting elegant web solutions, streamlining processes through automation, or delving into data analysis, Python is my trusted companion in these endeavors.
One of my most significant achievements is my in-depth understanding of MQL5, which I've cultivated since 2019. This experience has made me a seasoned professional in algorithmic trading, equipped with the knowledge and skills to create sophisticated trading strategies that can maximize returns and minimize risks. The world of finance and trading is ever-evolving, and I ensure that I stay at the forefront of these developments to offer top-notch algorithmic trading solutions.
For a closer look at my coding prowess and contributions, feel free to follow me on GitHub: https://github.com/MegaJoctan
I take pride in my open-source projects and the code I share with the programming community.
DISCORD: https://discord.gg/2qgcadfgrx
TELEGRAM: https://t.me/omegafx_co
If you're looking for a skilled collaborator for your Machine Learning project, look no further! You can hire me by opening this link: https://www.mql5.com/en/job/new?prefered=omegajoctan
I bring a wealth of experience in programming and a deep appreciation for the nuances of machine learning.
But that's not all – I also offer a range of trading products that cater to both beginners and experts. Explore my catalog of free and paid trading products here: My Trading Products. These meticulously crafted tools can help you navigate the world of algorithmic trading more effectively and profitably.
Thank you for taking the time to learn more about me. I'm always eager to connect with fellow developers, traders, and enthusiasts. Let's collaborate and innovate together!

The sqlite3 module in Python offers a straightforward approach for working with SQLite databases, it is fast and convenient. In this article, we are going to build a similar module on top of built-in MQL5 functions for working with databases to make it easier to work with SQLite3 databases in MQL5 as in Python.

The Prophet model, developed by Facebook, is a robust time series forecasting tool designed to capture trends, seasonality, and holiday effects with minimal manual tuning. It has been widely adopted for demand forecasting and business planning. In this article, we explore the effectiveness of Prophet in forecasting volatility in forex instruments, showcasing how it can be applied beyond traditional business use cases.

Similar to Telegram, Discord is capable of receiving information and messages in JSON format using it's communication API's, In this article, we are going to explore how you can use discord API's to send trading signals and updates from MetaTrader 5 to your Discord trading community.

Explore how Vector Autoregression (VAR) models can forecast Forex OHLC (Open, High, Low, and Close) time series data. This article covers VAR implementation, model training, and real-time forecasting in MetaTrader 5, helping traders analyze interdependent currency movements and improve their trading strategies.

Have you ever looked at the chart and felt that strange sensation… that there’s a pattern hidden just beneath the surface? A secret code that might reveal where prices are headed if only you could crack it? Meet LGMM, the Market’s Hidden Pattern Detector. A machine learning model that helps identify those hidden patterns in the market.

ARIMA, short for Auto Regressive Integrated Moving Average, is a powerful traditional time series forecasting model. With the ability to detect spikes and fluctuations in a time series data, this model can make accurate predictions on the next values. In this article, we are going to understand what is it, how it operates, what you can do with it when it comes to predicting the next prices in the market with high accuracy and much more.

MetaTrader 5 python package provides an easy way to build trading applications for the MetaTrader 5 platform in the Python language, while being a powerful and useful tool, this module isn't as easy as MQL5 programming language when it comes to making an algorithmic trading solution. In this article, we are going to build trade classes similar to the one offered in MQL5 to create a similar syntax and make it easier to make trading robots in Python as in MQL5.

Detecting patterns in financial markets is challenging because it involves seeing what's on the chart, something that's difficult to undertake in MQL5 due to image limitations. In this article, we are going to discuss a decent model made in Python that helps us detect patterns present on the chart with minimal effort.

Fibonacci retracements are a popular tool in technical analysis, helping traders identify potential reversal zones. In this article, we’ll explore how these retracement levels can be transformed into target variables for machine learning models to help them understand the market better using this powerful tool.

News drives the financial markets, especially major releases like Non-Farm Payrolls (NFPs). We've all witnessed how a single headline can trigger sharp price movements. In this article, we dive into the powerful intersection of news data and Artificial Intelligence.

The AI breakthroughs dominating headlines, from ChatGPT to self-driving cars, aren’t built from isolated models but through cumulative knowledge transferred from various models or common fields. Now, this same "learn once, apply everywhere" approach can be applied to help us transform our AI models in algorithmic trading. In this article, we are going to learn how we can leverage the information gained across various instruments to help in improving predictions on others using transfer learning.

Candlestick patterns help traders understand market psychology and identify trends in financial markets, they enable more informed trading decisions that can lead to better outcomes. In this article, we will explore how to use candlestick patterns with AI models to achieve optimal trading performance.

Financial markets are not perfectly balanced. Some markets are bullish, some are bearish, and some exhibit some ranging behaviors indicating uncertainty in either direction, this unbalanced information when used to train machine learning models can be misleading as the markets change frequently. In this article, we are going to discuss several ways to tackle this issue.

NumPyライブラリは、Pythonプログラミング言語においてほぼすべての機械学習アルゴリズムの中核を支えています。本記事では、高度なモデルやアルゴリズムの構築を支援するために、複雑なコードをまとめたモジュールを実装していきます。

ノイズが多く、予測が難しいデータで溢れる世界では、意味のあるパターンを特定するのは困難です。この記事では、データをトレンド、季節パターン、ノイズといった主要な要素に分解する強力な分析手法「季節分解」について解説します。こうしてデータを分解することで、隠れた洞察を見つけ、より明確で解釈しやすい情報を得ることが可能になります。
この製品は過去3年間にわたって開発されてきました。MQL5プログラミング言語で人工知能や機械学習コードを扱うための最も高度なコードベースです。MetaTrader 5でAI搭載のトレーディングロボットやインジケーターを多数作成するために使用されています。 これは、MQL5向けの機械学習に関する無料のオープンソースプロジェクトのプレミアムバージョンです。こちらからアクセスできます: https://github.com/MegaJoctan/MALE5 。無料版は機能が少なく、ドキュメントも不足しており、メンテナンスも不十分です。小規模なAIモデル向けに設計されています。 このプレミアム製品には、AI搭載のトレーディングロボットを効率的にコーディングするために必要なすべてが含まれています。 このライブラリを購入すべき理由は? 非常に使いやすい。コードの構文は直感的で、PythonのScikit-learn、TensorFlow、Kerasなどの人気AIライブラリに似ています。 充実したドキュメント。多くの動画、サンプル、ドキュメントが用意されており、すぐに始められます。

機械学習モデルを使用する際は、学習・検証・テストに使用するデータの一貫性を確保することが重要です。この記事では、MQL5の外部(多くの学習がおこなわれる環境)とMQL5内部の両方で同じデータを利用できるようにするため、MQL5で独自のPandasライブラリを作成します。

MQL5でインジケーター情報を収集する革新的なアプローチにより、開発者がカスタム入力をインジケーターに渡して即座に計算をおこなえるようになり、より柔軟で効率的なデータ分析が可能になります。この方法は、従来の制約を超えてインジケーターで処理される情報に対する制御性を高めるため、アルゴリズム取引において特に有用です。
Vix75 Killerのパワーの核 革新的なAI戦略の融合 Vix75 Killer の中心には、 CatBoost と LightGBM の強みを組み合わせた高度な機械学習モデルが組み込まれています。これらの洗練されたAI駆動アルゴリズムは、予測精度を向上させ、 ボラティリティインデックス75 (VIX75)取引の意思決定を最適化します。勾配ブースティングの独自の能力を活用することで、 Vix75 Killer は市場の状況に動的に適応し、堅牢な取引実行と卓越したパフォーマンスを提供します。 この統合アプローチにより、 Vix75 Killer は価格変動の複雑なパターンを学習し、利益のチャンスを活用し、リアルタイムのフィードバックを通じて戦略を継続的に改善します。 かつてないリスク管理 Vix75 Killer の主な特徴の1つは、 資本の保全 と規律あるリスク管理への注力です。デフォルトでは、ボットは 1回の取引で口座残高の1%のみをリスクにさらします 。これにより、個々のポジションが口座全体を危険にさらすことはありません。また、 1日の損失を3%に制限