
Возможности Мастера MQL5, которые вам нужно знать (Часть 35): Регрессия опорных векторов
Регрессия опорных векторов — это идеалистический способ поиска функции или "гиперплоскости" (hyper-plane), который наилучшим образом описывает взаимосвязь между двумя наборами данных. Мы попытаемся использовать его при прогнозировании временных рядов в пользовательских классах Мастера MQL5.

Создание самооптимизирующихся советников на языках MQL5 и Python
В этой статье обсудим, как можно создать советник, способный самостоятельно выбирать и менять торговые стратегии в зависимости от преобладающих на рынке условий. Познакомимся с цепями Маркова и с их возможностями с точки зрения пользы для нас, алготрейдеров.

Удаленный профессиональный риск-менеджер Forex на Python
Делаем удаленный профессиональный риск-менеджер Для Forex на Python, разворачиваем его на сервере по шагам. В процессе статьи поймем, как программно управлять рисками на Форекс, и как больше не слить депозит на Форекс.

Алгоритм успешного ресторатора — Successful Restaurateur Algorithm (SRA)
Алгоритм успешного ресторатора (SRA) — инновационный метод оптимизации, вдохновленный принципами управления ресторанным бизнесом. В отличие от традиционных подходов, SRA не отбрасывает слабые решения, а улучшает их, комбинируя с элементами успешных. Алгоритм показывает конкурентоспособные результаты и предлагает свежий взгляд на балансирование между исследованием и эксплуатацией в задачах оптимизации.

Нейросети в трейдинге: Двойная кластеризация временных рядов (DUET)
Фреймворк DUET предлагает инновационный подход к анализу временных рядов, сочетая временную и канальную кластеризацию для выявления скрытых закономерностей в анализируемых данных. Это позволяет адаптировать модели к изменениям во времени и повысить качество прогнозирования за счет устранения шума.

Возможности Мастера MQL5, которые вам нужно знать (Часть 34): Эмбеддинг цены с нетрадиционной RBM
Ограниченные машины Больцмана (Restricted Boltzmann Machines, RBM) — форма нейронной сети, разработанная в середине 1980-х годов, когда вычислительные ресурсы были непомерно дорогими. Вначале она опиралась на выборку Гиббса (Gibbs Sampling) и контрастивную дивергенцию (Contrastive Divergence) с целью уменьшения размерности или выявления скрытых вероятностей/свойств во входных обучающих наборах данных. Мы рассмотрим, как обратное распространение ошибки (backpropagation) может работать аналогичным образом, когда RBM "встраивает" (embeds) цены в прогнозирующий многослойный перцептрон.

Автоматизация торговли с помощью трендовой стратегии Parabolic SAR на MQL5: Создаем эффективный советник
В этой статье мы автоматизируем торговлю с помощью стратегии Parabolic SAR на MQL5, создав эффективный советник. Советник будет совершать сделки по трендам, определяемым индикатором Parabolic SAR.

Создание панели торгового администратора на MQL5 (Часть I): Создание интерфейса обмена сообщениями
В данной статье рассматривается создание интерфейса обмена сообщениями для MetaTrader 5, предназначенного для системных администраторов, чтобы облегчить общение с другими трейдерами непосредственно внутри платформы. Недавняя интеграция социальных платформ с MQL5 позволяет быстро транслировать сигнал по разным каналам. Представьте, что вы можете проверять отправленные сигналы одним щелчком мыши — либо "ДА", либо "НЕТ". Читайте дальше, чтобы узнать больше.

Переосмысливаем классические стратегии (Часть II): Пробои индикатора Bollinger Bands
В статье рассматривается торговая стратегия, объединяющая линейный дискриминантный анализ (Linear Discriminant Analysis, LDA) с полосами Боллинджера с использованием прогнозов категориальных зон для стратегических сигналов входа в рынок.

Cоздание стратегии возврата к среднему на основе машинного обучения
В данной статье предлагается очередной оригинальный подход к созданию торговых систем на основе машинного обучения, с использованием кластеризации и разметки сделок для стратегий возврата к среднему.

Формулировка динамического советника на нескольких парах (Часть 1): Корреляция и обратная корреляция валютных пар
Динамический советник на нескольких парах использует как корреляционные, так и обратные корреляционные стратегии для оптимизации эффективности торговли. Анализируя рыночные данные в режиме реального времени, он определяет и использует взаимосвязь между валютными парами.

MQL5-советник, интегрированный в Telegram (Часть 3): Отправка скриншотов графиков с подписями из MQL5 в Telegram
В этой статье мы создадим советник MQL5, который кодирует скриншоты графиков в виде графических данных и отправляет их в чат Telegram посредством HTTP-запросов. Внедрив кодирование и передачу изображений, мы улучшим существующую систему MQL5-Telegram путем добавления визуальной торговой аналитики непосредственно в Telegram.

Бильярдный алгоритм оптимизации — Billiards Optimization Algorithm (BOA)
Метод BOA, вдохновленный классической игрой в бильярд, моделирует процесс поиска оптимальных решений, как игру с шарами, стремящимися попасть в лузы, олицетворяющие наилучшие результаты. В данной статье мы рассмотрим основы работы BOA, его математическую модель и эффективность в решении различных оптимизационных задач.

Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Окончание)
Продолжаем интеграцию методов, предложенных авторами фреймворка Attraos, в торговые модели. Напомню, что данный фреймворк использует концепции теории хаоса для решения задач прогнозирования временных рядов, интерпретируя их как проекции многомерных хаотических динамических систем.

Переосмысливаем классические стратегии (Часть V): Анализ нескольких инструментов в валютной паре USDZAR
В данной серии статей мы вновь рассматриваем классические стратегии, чтобы выяснить, можно ли улучшить стратегию с помощью ИИ. В сегодняшней статье мы рассмотрим популярную стратегию анализа нескольких инструментов с использованием корзины коррелированных ценных бумаг. Сосредоточимся на экзотической валютной паре USDZAR.

Машинное обучение и Data Science (Часть 29): Как отбирать лучшие форекс-данные для обучения ИИ
В этой статье мы подробно рассмотрим важные аспекты при выборе наиболее релевантных и качественных данных с рынка Forex для повышения производительности моделей искусственного интеллекта.

Индикатор оценки силы и слабости валютных пар на чистом MQL5
Создаем профессиональный индикатор для анализа силы валют на MQL5. Пошаговое руководство научит вас разрабатывать мощный торговый инструмент с визуальной панелью для MetaTrader 5. Вы узнаете, как рассчитывать силу валютных пар по нескольким таймфреймам (H1, H4, D1), реализовывать динамическое обновление данных и создавать удобный пользовательский интерфейс.

Управление капиталом в трейдинге и программа домашней бухгалтерии трейдера с базой данных
Как трейдеру управлять капиталом? Как трейдеру и инвестору вести учет расходов, доходов, активов и пассивов? Я представлю вам не просто программу для учета, я покажу вам инструмент, который может стать вашим надежным финансовым навигатором в бурном море трейдинга.

Как опередить любой рынок (Часть III): Индекс расходов Visa
В мире больших данных существуют миллионы альтернативных наборов данных, которые потенциально могут улучшить наши торговые стратегии. В этой серии статей мы рассматриваем наиболее информативные общедоступные наборы данных.

Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Attraos)
Фреймворк Attraos интегрирует теорию хаоса в долгосрочное прогнозирование временных рядов, рассматривая их как проекции многомерных хаотических динамических систем. Используя инвариантность аттрактора, модель применяет реконструкцию фазового пространства и динамическую память с несколькими разрешениями для сохранения исторических структур.

Переосмысливаем классические стратегии (Часть VI): Анализ нескольких таймфреймов
В данной серии статей мы вновь рассматриваем классические стратегии, чтобы выяснить, можно ли улучшить их с помощью ИИ. В сегодняшней статье мы рассмотрим популярную стратегию анализа нескольких таймфреймов, чтобы оценить, можно ли улучшить эту стратегию с помощью ИИ.

Разрабатываем мультивалютный советник (Часть 24): Подключаем новую стратегию (I)
В данной статье рассмотрим как нам подключить новую стратегию к созданной системе автоматической оптимизации. Посмотрим, какие советники нам понадобится создать и можно ли будет обойтись без изменений файлов библиотеки Advisor или свести необходимые изменения к минимуму.

Анализ всех вариантов движения цены на квантовом компьютере IBM
Используем квантовый компьютер от IBM для открытия всех вариантов движения цены. Звучит как научная фантастика? Добро пожаловать в мир квантовых вычислений для трейдинга!

Оптимизация хаотичной игрой — Chaos Game Optimization (CGO)
Представляем новый метаэвристический алгоритм Chaos Game Optimization (CGO), демонстрирующий уникальную способность сохранять высокую эффективность при работе с задачами большой размерности. В отличие от большинства оптимизационных алгоритмов, CGO не только не теряет, но иногда даже увеличивает производительность при масштабировании задачи, что является его ключевой особенностью.

От начального до среднего уровня: Массивы и строки (III)
Эта статья посвящена рассмотрению двух аспектов. Во-первых, того, как стандартная библиотека может преобразовывать бинарные значения в другие формы представления, такие как восьмеричная, десятичная и шестнадцатеричная. А во-вторых, мы поговорим о том, как можно определить ширину нашего пароля на основе секретной фразы, используя уже полученные знания.

Объединение стратегий фундаментального и технического анализа на языке MQL5 для начинающих
В этой статье обсудим, как эффективно интегрировать следование тренду и фундаментальные принципы в один советник для создания более надежной стратегии. Статья продемонстрирует, насколько просто любой желающий может приступить к созданию собственных торговых алгоритмов с помощью языка MQL5.

Возможности Мастера MQL5, которые вам нужно знать (Часть 33): Ядра гауссовского процесса
Ядра гауссовского процесса (Gaussian Process Kernels) — это ковариационная функция нормального распределения, которая может быть использована в прогнозировании. Мы исследуем этот уникальный алгоритм в пользовательском классе сигналов MQL5, чтобы увидеть, можно ли использовать его в качестве основного сигнала входа и выхода.

Разрабатываем мультивалютный советник (Часть 23): Приводим в порядок конвейер этапов автоматической оптимизации проектов (II)
Мы стремимся создать систему автоматической периодической оптимизации торговых стратегий, используемых в одном итоговом советнике. С развитием система становится всё более сложной, поэтому время от времени надо смотреть на неё в целом с целью выявления узких мест и неоптимальных решений.

Торговая стратегия SP500 на языке MQL5 для начинающих
Узнайте, как использовать язык MQL5 для точного прогнозирования индекса S&P 500, добавляя классический технический анализ для обеспечения стабильности и объединяя алгоритмы с проверенными временем принципы для получения надежной информации о рынке.

Интеграция MQL5 с пакетами обработки данных (Часть 2): Машинное обучение и предиктивная аналитика
В нашей серии статей об интеграции MQL5 с пакетами обработки данных мы подробно рассматриваем мощное сочетание машинного обучения и предиктивного анализа. Мы изучим, как беспрепятственно объединить MQL5 с популярными библиотеками машинного обучения, чтобы создавать сложные прогностические модели финансовых рынков.

Нейросети в трейдинге: Гибридные модели последовательностей графов (Окончание)
Продолжаем изучение гибридных моделей последовательностей графов (GSM++), которые интегрируют преимущества различных архитектур, обеспечивая высокую точность анализа и эффективное распределение вычислительных ресурсов. Эти модели эффективно выявляют скрытые закономерности, снижая влияние рыночного шума и повышая качество прогнозирования.

Возможности Мастера MQL5, которые вам нужно знать (Часть 32): Регуляризация
Регуляризация — это форма штрафования функции потерь пропорционально дискретному весу, применяемому ко всем слоям нейронной сети. Мы оценим значимость некоторых форм регуляризации, протестировав советник, собранный в Мастере.

Распознавание паттернов с использованием динамической трансформации временной шкалы в MQL5
В этой статье мы обсудим концепцию динамической трансформации временной шкалы (dynamic time warping) как средства выявления прогностических закономерностей в финансовых временных рядах. Мы рассмотрим, как она работает, а также представим ее реализацию на чистом MQL5.

Как функции столетней давности могут обновить ваши торговые стратегии
В этой статье речь пойдет о функциях Радемахера и Уолша. Мы исследуем способы применения этих функций для анализа финансовых временных рядов, а также рассмотрим различные варианты их применения в трейдинге.

Оптимизация наследованием крови — Blood inheritance optimization (BIO)
Представляю вашему вниманию мой новый популяционный алгоритм оптимизации BIO (Blood Inheritance Optimization), вдохновленный системой наследования групп крови человека. В этом алгоритме каждое решение имеет свою "группу крови", определяющую способ его эволюции. Как и в природе, группа крови ребенка наследуется по особым правилам, в BIO новые решения получают свои характеристики через систему наследования и мутаций.

Нейросети в трейдинге: Гибридные модели последовательностей графов (GSM++)
Гибридные модели последовательностей графов (GSM++) объединяют сильные стороны различных архитектур, обеспечивая высокую точность анализа данных и оптимизацию вычислительных затрат. Эти модели эффективно адаптируются к динамическим рыночным данным, улучшая представление и обработку финансовой информации.

Интеграция MQL5: Python
Python — известный и популярный язык программирования со множеством функций, особенно в областях финансов, науки о данных, искусственного интеллекта и машинного обучения. Python — мощный инструмент, который может быть полезен и в трейдинге. MQL5 позволяет нам использовать этот мощный язык для эффективного достижения наших целей. В этой статье мы рассмотрим некоторые базовые сведения о Python и расскажем, как его можно интегрировать в MQL5.

Разработка системы репликации (Часть 68): Настройка времени (I)
Сегодня мы продолжим работу над тем, чтобы заставить указатель мыши сообщать нам об оставшемся времени бара в периоды низкой ликвидности. Хотя на первый взгляд кажется, что всё просто, на самом деле эта задача гораздо сложнее. Это связано с некоторыми препятствиями, которые нам придется преодолеть. Поэтому важно, чтобы вы хорошо усвоили материал из первой части данной серии, чтобы понять следующие части.

Построение модели для ограничения диапазона сигналов по тренду (Часть 8): Разработка советника (I)
В этой статье мы разработаем наш первый советник на MQL5 на основе индикатора, который мы создали в предыдущей статье. Мы рассмотрим все функции, необходимые для автоматизации процесса, включая управление рисками. Это позволит перейти от ручного выполнения сделок к автоматизированным системам.

Нейросети в трейдинге: Двухмерные модели пространства связей (Окончание)
Продолжаем знакомство с инновационным фреймворком Chimera — двухмерной моделью пространства состояний, использующей нейросетевые технологии для анализа многомерных временных рядов. Этот метод обеспечивает высокую точность прогнозирования при низких вычислительных затратах.