初心者からプロまでMQL5をマスターする(第4回):配列、関数、グローバルターミナル変数について
この記事は初心者向け連載の続きです。データ配列、データと関数の相互作用、および異なるMQL5プログラム間でのデータ交換を可能にするグローバルターミナル変数について詳しく説明します。
初級から中級へ:変数(III)
今日は、定義済みのMQL5言語変数と定数の使用方法を見ていきます。さらに、別の特殊なタイプの変数である関数を分析します。これらの変数を適切に操作する方法を知っているかどうかは、動作するアプリケーションと動作しないアプリケーションの違いを意味する場合があります。ここで紹介されている内容を理解するには、以前の記事で説明した内容を理解する必要があります。
取引におけるニューラルネットワーク:時系列予測のための軽量モデル
軽量な時系列予測モデルは、最小限のパラメータ数で高いパフォーマンスを実現します。これにより、コンピューティングリソースの消費を抑えつつ、意思決定の迅速化が可能となります。こうしたモデルは軽量でありながら、より複雑なモデルと同等の予測精度を達成できます。
多通貨エキスパートアドバイザーの開発(第16回):異なるクォート履歴がテスト結果に与える影響
開発中のエキスパートアドバイザー(EA)は、さまざまなブローカーとの取引で良好な結果を示すことが期待されていますが、現時点では、MetaQuotesデモ口座からのクォートを使用してテストを実行しています。テストや最適化に使用したクォートとは異なる価格データを持つ取引口座でも、EAが正しく機能する準備が整っているのかを確認してみましょう。
初級から中級へ:変数(II)
今日は、static変数の取り扱いについて学びます。このメカニズムを使用する際に守らなければならないいくつかの推奨事項があるため、この問題は初心者やある程度の経験を持つプログラマーにとってしばしば混乱を招きます。ここで提示される資料は教育目的のみに使用されます。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
プッシュ通知による取引の監視:MetaTrader 5サービスの例
この記事では、取引結果をスマートフォンに通知するサービスアプリの作成について説明します。標準ライブラリオブジェクトのリストを処理して、必要なプロパティごとにオブジェクトの選択を整理する方法を学習します。
取引におけるニューラルネットワーク:Adam-mini最適化によるメモリ消費量の削減
モデルの訓練と収束プロセスの効率を向上させるためのアプローチの1つが、最適化手法の改良です。Adam-miniは、従来のAdamアルゴリズムを改良し、より効率的な適応型最適化を実現することを目的とした手法です。
初級から中級へ:変数(I)
多くの初心者プログラマーは、自分のコードが期待どおりに動作しない理由を理解するのに苦労します。コードを正しく機能させるためには、さまざまな要素が関わります。ただ関数や操作を組み合わせるだけでは、コードが適切に動作するとは限りません。今日は、単にコードをコピー&ペーストするのではなく、実際に正しくコードを書く方法を学んでみましょう。ここで提供される資料は教育目的のみに使用されるべきです。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
リプレイシステムの開発(第59回):新たな未来
さまざまなアイデアを適切に理解することで、より少ない労力でより多くのことを実現できます。この記事では、サービスがチャートと対話する前にテンプレートを構成する必要がある理由について説明します。また、マウスポインタを改良し、より多くの機能を持たせることについても考察します。
カスタムインジケーター:ネット口座の部分的なエントリー、エグジット、リバーサル取引のプロット
この記事では、MQL5でインジケーターを作成する非標準的な方法について説明します。トレンドやチャートパターンに注目するのではなく、部分的なエントリーやエグジットを含めた独自のポジション管理を目的とします。取引履歴やポジションに関連する動的マトリックスと、いくつかの取引機能を広範に活用し、これらの取引がおこなわれた場所をチャート上に表示します。
リプレイシステムの開発(第58回):サービスへの復帰
リプレイ/シミュレーターサービスの開発と改良を一時中断していましたが、再開することにしました。ターミナルグローバルのようなリソースの使用をやめたため、いくつかの部分を完全に再構築しなければなりません。ご心配なく。このプロセスを詳細に説明することで、誰もが私たちのサービスの進展についていけるようにします。
リプレイシステムの開発(第57回):テストサービスについて
注意点が1つあります。この記事にはサービスコードは含まれておらず、次の記事でのみ提供されます。ただし、実際の開発の出発点として同じコードを使用するため、この記事ではその説明をおこないます。ですので、注意深く、そして忍耐強く読んでください。毎日、すべてがさらに面白くなっていきますので、次の記事を楽しみにお待ちください。
PythonとMQL5による多銘柄分析(第2回):ポートフォリオ最適化のための主成分分析
取引口座のリスク管理は、すべてのトレーダーにとっての課題です。MetaTrader 5で、さまざまな銘柄に対して高リスク、中リスク、低リスクモードを動的に学習する取引アプリケーションを開発するにはどうすればよいでしょうか。PCA(主成分分析)を使用することで、ポートフォリオの分散をより効果的に管理できるようになります。MetaTrader 5から取得した市場データを基に、これら3つのリスクモードを学習するアプリケーションの作成方法を説明します。
PythonとMQL5を使用した特徴量エンジニアリング(第1回):長期AIモデルの移動平均の予測
移動平均は、AIモデルが予測するのに最適な指標です。しかし、データを慎重に変換することで、さらなる精度向上が可能です。本記事では、現在の手法よりもさらに先の未来を、高い精度を維持しながら予測できるAIモデルの構築方法を解説します。移動平均がこれほど有用な指標であることには驚かされます。
知っておくべきMQL5ウィザードのテクニック(第45回):モンテカルロ法による強化学習
モンテカルロは、ウィザードで組み立てられたエキスパートアドバイザー(EA)における実装を検討するために取り上げる、強化学習の4つ目の異なるアルゴリズムです。ランダムサンプリングに基づいていますが、多様なシミュレーション手法を活用できる点が特徴です。

MQL5での暗号化の探索:ステップごとのアプローチ
この記事では、MQL5内での暗号化の統合について探り、取引アルゴリズムのセキュリティと機能を強化する方法を紹介します。主要な暗号化手法と、それらを自動取引に実際に実装する方法について説明します。

適応型社会行動最適化(ASBO):二段階の進化
生物の社会的行動と、それが新しい数学モデルであるASBO(適応型社会的行動最適化)の開発に与える影響について、引き続き考察していきます。今回は、二段階の進化プロセスを詳しく分析し、アルゴリズムをテストした上で結論を導き出します。自然界において生物の集団が生存のために協力するのと同様に、ASBOも集団行動の原理を活用し、複雑な最適化問題を解決します。

取引におけるカオス理論(第1回):金融市場における導入と応用、リアプノフ指数
カオス理論は金融市場に適用できるでしょうか。この記事では、従来のカオス理論とカオスシステムがビル・ウィリアムズが提案した市場のカオスの概念とどのように異なるかについて考察します。

多通貨エキスパートアドバイザーの開発(第15回):実際の取引のためのEAの準備
既製のエキスパートアドバイザー(EA)の完成に徐々に近づくにつれ、取引戦略のテスト段階では二次的に思える問題にも注意を払う必要があります。これらの問題は、実際の取引に移行する際に重要となります。

適応型社会行動最適化(ASBO):Schwefel、ボックス=ミュラー法
この記事は、生物の社会的行動の世界と、それが新たな数学モデルであるASBO(適応型社会的行動最適化、Adaptive Social Behavior Optimization)の構築に与える影響について、興味深い洞察を提供します。生物社会におけるリーダーシップ、近隣関係、協力の原則が、革新的な最適化アルゴリズムの開発にどのように着想を与えるのかを探ります。

人工電界アルゴリズム(AEFA)
この記事では、クーロンの静電気力の法則に触発された人工電界アルゴリズム(AEFA: Artificial Electric Field Algorithm)を紹介します。このアルゴリズムは、荷電粒子とその相互作用を利用して複雑な最適化問題を解決するために電気現象をシミュレートします。AEFAは、自然法則に基づいた他のアルゴリズムと比較して、独自の特性を示します。

取引におけるニューラルネットワーク:時空間ニューラルネットワーク(STNN)
この記事では、時空間変換を活用し、今後の価格変動を効果的に予測する手法について解説します。STNNの数値予測精度を向上させるために、データの重要な側面をより適切に考慮できる連続アテンションメカニズムが提案されています。

取引におけるニューラルネットワーク:二重アテンションベースのトレンド予測モデル
前回の記事で取り上げた時系列の区分線形表現の活用について、引き続き議論します。本日は、この手法を他の時系列分析手法と組み合わせることで、価格動向の予測精度を向上させる方法を探ります。

ボラティリティを予測するための計量経済学ツール:GARCHモデル
この記事では、条件付き異分散性(GARCH)という非線形モデルの特性について説明します。また、このモデルを基に、一歩先のボラティリティを予測するためのiGARCHインジケーターを構築しました。モデルのパラメータ推定には、ALGLIB数値解析ライブラリを使用しています。

取引におけるニューラルネットワーク:時系列の区分線形表現
本記事は、これまでの公開記事とはやや異なる内容となっています。本記事では、時系列データの代替的な表現について解説します。時系列の区分的線形表現とは、小さな区間ごとに線形関数を用いて時系列データを近似する手法です。

ニューラルネットワークが簡単に(第97回):MSFformerによるモデルの訓練
さまざまなモデルアーキテクチャの設計を検討する際、モデルの訓練プロセスには十分な注意が払われないことがよくあります。この記事では、そのギャップを埋めることを目指します。

多通貨エキスパートアドバイザーの開発(第14回):リスクマネージャーにおける適応型ボリューム変更
以前開発されたリスクマネージャーには基本的な機能のみが含まれていました。取引戦略のロジックに干渉することなく取引結果を向上させるために、どのような開発の可能性があるかを検討してみましょう。

初心者からプロまでMQL5をマスターする(第3回):複雑なデータ型とインクルードファイル
これはMQL5プログラミングの主な側面を説明する連載の第3回目です。この記事では、前回の記事で触れなかった複雑なデータ型について説明します。具体的には、構造体、共用体、クラス、および「関数」データ型を扱います。また、#includeプリプロセッサディレクティブを使ってプログラムにモジュール性を加える方法についても解説します。

ニューラルネットワークの実践:擬似逆行列(II)
この連載は教育的な性質のものであり、特定の機能の実装を示すことを目的としていないため、この記事では少し異なる方法でおこないます。因数分解を適用して行列の逆行列を取得する方法を示す代わりに、擬似逆行列の因数分解に焦点を当てます。その理由は、特別な方法で一般的な係数を取得することができる場合、一般的な係数を取得する方法を示すことに意味がないからです。さらに良いことに、読者は物事がなぜそのように起こるのかをより深く理解できるようになります。それでは、時間の経過とともにハードウェアがソフトウェアに取って代わる理由を考えてみましょう。

リプレイシステムの開発(第56回):モジュールの適応
モジュール同士はすでに適切に連携していますが、リプレイサービスでマウスポインタを使用しようとするとエラーが発生します。次のステップに進む前に、この問題を修正する必要があります。さらに、マウスインジケーターのコードにある別の問題も修正します。この修正によって、今回のバージョンは最終的に安定し、洗練されたものになります。

リプレイシステムの開発(第55回):コントロールモジュール
この記事では、開発中のメッセージシステムに統合できるように、コントロールインジケーターを実装します。それほど難しくはありませんが、このモジュールの初期化について理解しておくべき細かい点がいくつかあります。ここで提示される資料は教育目的のみに使用されます。示された概念を学習し習得する以外の目的での利用は決して想定されていません。

MQL5経済指標カレンダーを使った取引(第1回):MQL5経済指標カレンダーの機能をマスターする
この記事では、まず、MQL5経済指標カレンダーの基本機能を理解し、それを取引に活用する方法を探ります。次に、MQL5で経済指標カレンダーの主要機能を実装し、取引の判断に役立つニュースを取得する方法を説明します。最後に、この情報を活用して取引戦略を効果的に強化する方法を紹介します。

知っておくべきMQL5ウィザードのテクニック(第44回):ATR (Average True Range)テクニカル指標
ATRオシレーターは、特に外国為替市場において、ボラティリティの代理として機能する非常に人気のあるインジケーターです。これは、特にボリュームデータが不足している市場で広く活用されています。以前のインジケーターと同様に、パターンに基づいて分析をおこない、MQL5ウィザードライブラリのクラスとアセンブリを活用して、戦略およびテストレポートを共有します。

主成分を用いた特徴量選択と次元削減
この記事では、Luca Puggini氏とSean McLoone氏による論文「Forward Selection Component Analysis: Algorithms and Applications」に基づき、修正版のForward Selection Component Analysis (FSCA)アルゴリズムの実装について詳しく解説します。

MacOSでのMetaTrader 5
macOS上のMetaTrader 5取引プラットフォーム用の特別なインストーラーを提供します。これは、アプリケーションをネイティブにインストールできる本格的なウィザードです。インストーラーは、システムの識別、最新のWineバージョンのダウンロードとインストール、設定の適用、その後のMetaTraderのインストールまで、すべての手順を自動で実行します。インストールが完了すると、すぐにプラットフォームを使用できます。

ニュース取引が簡単に(第5回):取引の実施(II)
この記事では、取引管理クラスを拡張し、ニュースイベントを取引するための買い逆指値注文(買いストップ注文)と売り逆指値注文(売りストップ注文)を追加します。また、オーバーナイト取引を防ぐために、これらの注文に有効期限の制約を実装します。さらに、逆指値注文(ストップ注文)を使用する際に発生しうるスリッページ、特にニュースイベント中に発生する可能性のあるスリッページを防止または最小限に抑えるために、スリッページ関数をエキスパートアドバイザー(EA)に組み込みます。

Connexusのリクエスト(第6回):HTTPリクエストとレスポンスの作成
Connexusライブラリ連載第6回目では、HTTPリクエストの構成要素全体に焦点を当て、リクエストを構成する各コンポーネントを取り上げます。そして、リクエスト全体を表現するクラスを作成し、これまでに作成したクラスを統合します。

Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第2回):ボタンの応答性の追加
この記事では、ボタンの応答性を有効にすることで、静的なMQL5ダッシュボードパネルをインタラクティブなツールへと変換することに焦点を当てます。GUIコンポーネントの機能を自動化し、ユーザーのクリックに適切に反応する方法を探究します。この記事の最後には、ユーザーのエンゲージメントと取引体験を向上させる動的なインターフェイスを構築します。