
MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第6回): Deep Double Descentの活用
伝統的な機械学習では、モデルの過剰適合を防ぐことが実践者にとって重要であると教えられます。しかし、この考え方は、ハーバード大学の勤勉な研究者たちによって発表された新たな洞察によって見直されつつあります。彼らの研究によれば、一見すると過剰適合に見える現象が、場合によっては訓練プロセスを早期に終了した結果である可能性があることが示唆されています。本記事では、この研究論文で提案されたアイデアを活用し、市場リターン予測におけるAIの利用をどのように向上させられるかを解説します。

MQL5で取引管理者パネルを作成する(第4回):ログインセキュリティ層
悪意のある人物が取引管理者室に侵入し、世界中の何百万ものトレーダーに貴重な洞察を伝えるために使用されるコンピューターと管理パネルにアクセスしたと想像してください。このような侵入は、誤解を招くメッセージの不正送信や、意図しないアクションをトリガーするボタンのランダムクリックなど、悲惨な結果につながる可能性があります。このディスカッションでは、MQL5のセキュリティ対策と、これらの脅威から保護するために管理パネルに実装した新しいセキュリティ機能について説明します。セキュリティプロトコルを強化することで、通信チャネルを保護し、グローバルな取引コミュニティの信頼を維持することを目指しています。この記事のディスカッションでさらに詳しい情報を見つけてください。

MQL5取引ツールキット(第3回):未決注文管理EX5ライブラリの開発
MQL5のコードやプロジェクトで、包括的な未決注文管理EX5ライブラリを開発して実装する方法を学びましょう。本記事では、広範な未決注文管理EX5ライブラリを作成する手順を紹介し、それをインポートおよび実装する方法を、取引パネルまたはグラフィカルユーザーインターフェース(GUI)の構築を通じて解説します。このEA注文パネルを使用すれば、チャートウィンドウ上のGUIから、指定されたマジックナンバーに関連する未決注文を直接オープン、監視、削除することが可能です。

MQL5とデータ処理パッケージの統合(第3回):データ可視化の強化
この記事では、基本的なチャートの枠を超え、インタラクティブ性、データの層化、ダイナミックな要素といった機能を組み込むことで、トレーダーがトレンド、パターン、相関関係をより効果的に探求できるようにする、データ可視化の高度化について解説します。

Across Neighbourhood Search (ANS)
この記事では、問題の詳細と検索空間内の環境のダイナミクスを考慮できる柔軟でインテリジェントな最適化手法の開発における重要なステップとしてのANSアルゴリズムの可能性を明らかにします。

Connexusの本体(第4回):HTTP本体サポートの追加
この記事では、JSONやプレーンテキストなどのデータを送信するために不可欠な、HTTPリクエストにおける本体(ボディ)の概念について探りました。適切なヘッダを使った正しい使い方を議論し、説明しました。また、Connexusライブラリの一部であるChttpBodyクラスを導入し、リクエストの本体の処理を簡素化しました。

化学反応最適化(CRO)アルゴリズム(第2回):組み立てと結果
第2回では、化学演算子を1つのアルゴリズムに集め、その結果の詳細な分析を紹介します。化学反応最適化(CRO)法がテスト機能に関する複雑な問題の解決にどのように対処するかを見てみましょう。

リプレイシステムの開発(第54回):最初のモジュールの誕生
この記事では、リプレイ/シミュレーターシステムで使用するための、他の目的にも汎用的に使用できる、実際に機能するモジュールの最初のものを組み立てる方法について説明します。マウスモジュールです。

MQL5で取引管理者パネルを作成する(第3回):テーマ管理のための組み込みクラスの拡張(II)
このディスカッションでは、既存のダイアログライブラリを慎重に拡張して、テーマ管理ロジックを組み込みます。さらに、管理パネルプロジェクトで使用されるCDialog、CEdit、およびCButtonクラスにテーマ切り替えのメソッドを統合します。さらに洞察力のある視点については、引き続きお読みください。

Connexusにおけるヘッダ(第3部):リクエスト用HTTPヘッダの使い方をマスターする
Connexusライブラリの開発を続けます。この章では、HTTPプロトコルにおけるヘッダの概念を探求し、ヘッダとは何か、何のためにあるのか、リクエストでどのように使うのかを説明します。APIとの通信で使用される主なヘッダを取り上げ、ライブラリでの設定方法の実践例を紹介します。

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第5回):深層マルコフモデル
この記事では、RSIインジケーターに単純なマルコフ連鎖を適用し、インジケーターが主要なレベルを通過した後の価格の挙動を観察します。NZDJPYペアで最も強い買いシグナルと売りシグナルは、RSIがそれぞれ11~20の範囲と71~80の範囲にあるときに生成されるという結論に達しました。データを操作して、保有するデータから直接学習した最適な取引戦略を作成する方法を説明します。さらに、遷移行列を最適に使用することを学習するためにディープニューラルネットワークを訓練する方法を説明します。

古典的な戦略を再構築する(第9回):多時間枠分析(II)
本日のディスカッションでは、AIモデルがどの時間枠で最高のパフォーマンスを発揮するかを明らかにするため、多時間枠分析の戦略を検討します。この分析により、EURUSDペアにおいて月次および時間足の時間枠が比較的誤差の少ないモデルを生成することが分かりました。この結果を活用し、月次時間枠でAIによる予測を行い、時間枠で取引を実行するアルゴリズムを作成しました。

どんな市場でも優位性を得る方法(第5回):FRED EURUSD代替データ
本日の議論では、セントルイス連邦準備銀行の広義のドル指数に関する代替日次データとその他のマクロ経済指標の集合を使用して、EURUSDの将来の為替レートを予測しました。残念ながら、データはほぼ完璧な相関関係にあるように見えますが、モデルの精度において際立った向上は実現できず、投資家は代わりに通常の市場相場を使用した方がよい可能性があることを示唆している可能性があります。

MetaTraderとGoogleスプレッドシートを使用して取引ジャーナルを作成する方法
MetaTraderとGoogleスプレッドシートを使用して取引ジャーナルを作成しましょう。HTTP POST経由で取引データを同期し、HTTPリクエストを使用して取得する方法を学習します。最終的には、取引を効果的かつ効率的に追跡するのに役立つ取引ジャーナルが手に入ります。

初心者からエキスパートへ:MQL5での共同デバッグ
問題解決は、MQL5でのプログラミングのような複雑なスキルを習得するための簡潔なルーチンを確立することができます。このアプローチでは、問題解決に集中しながら、同時にスキルアップを図ることができます。問題に取り組めば取り組むほど、高度な専門知識が脳に伝達されます。個人的には、デバッグはプログラミングをマスターするための最も効果的な方法だと思っています。今日は、コードクリーニングのプロセスを紹介し、乱雑なプログラムをクリーンで機能的なものに変えるための最善のテクニックについて解説します。この記事を読んで、貴重な洞察を発見してください。

リプレイシステムの開発(第53回):物事は複雑になる(V)
今回は、あまり理解されていない重要なトピックを取り上げます。「カスタムイベント」です。これは危険です。これらの要素の長所と短所を解説します。このトピックは、MQL5やその他の言語でプロのプログラマーになりたい人にとって重要な鍵となります。ここではMQL5とMetaTrader 5に焦点を当てます。

PythonとMQL5による多銘柄分析(前編):NASDAQ集積回路メーカー
ポートフォリオのリターンを最大化するために、AIを活用してポジションサイジングと注文数量を最適化する方法について解説します。本稿では、アルゴリズムを用いて最適なポートフォリオを特定し、期待リターンやリスク許容度に応じてポートフォリオを調整する手法を紹介します。このプロセスでは、SciPyライブラリやMQL5言語を活用し、保有中のすべてのデータを基に、最適かつ分散化されたポートフォリオを構築します。

MQL5用スキャルピングオーダーフロー
このMetaTrader 5エキスパートアドバイザー(EA)は、高度なリスク管理を備えたスキャルピングオーダーフロー戦略を実装しています。複数のテクニカル指標を使用し、オーダーフローの不均衡に基づいて取引機会を特定します。バックテストは潜在的な収益性を示しているが、特にリスク管理と取引結果の比率において、さらなる最適化の必要性を強調しています。経験豊富なトレーダーに適していますが、本番運用の前に十分なテストと理解が必要です。

HTTPとConnexus(第2回):HTTPアーキテクチャとライブラリ設計の理解
この記事では、HTTPプロトコルの基礎について、主なメソッド(GET、POST、PUT、DELETE)、ステータスコード、URLの構造について説明します。さらに、HTTPリクエストにおけるURLとクエリパラメータの操作を容易にするCQueryParamとCURLクラスによるConexxusライブラリの構築の始まりも紹介します。

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第4回):スタッキングモデル
本日は、自らの失敗から学習するAI搭載の取引アプリケーションの構築方法について解説します。特に、「スタッキング」と呼ばれる手法を紹介します。この手法では、2つのモデルを組み合わせて1つの予測をおこないます。1つ目のモデルは通常、性能が比較的低い学習者であり、2つ目のモデルはその学習者の残差を学習する、より高性能なモデルです。目標は、これらのモデルをアンサンブルとして統合することで、より高精度な予測を実現することです。

MacOSでのMetaTrader 4
macOS上のMetaTrader 4取引プラットフォーム用の特別なインストーラーを提供します。これは、アプリケーションをネイティブにインストールできる本格的なウィザードです。インストーラーは、システムの識別、最新のWineバージョンのダウンロードとインストール、設定の適用、その後のMetaTraderのインストールまで、すべての手順を自動で実行します。インストールが完了すると、すぐにプラットフォームを使用できます。

どんな市場でも優位性を得る方法(第4回):CBOEのユーロおよびゴールドボラティリティインデックス
シカゴオプション取引所(CBOE)が提供する代替デー タを分析し、XAUEUR 銘柄を予測する際のディープニューラルネットワークの精度を向上させます。

MQL5で古典的な戦略を再構築する(第3回):FTSE100予想
この連載では、よく知られた取引戦略を再検討し、AIを使って改善できるかどうかを検証します。本日の記事では、FTSE100について調べ、指数を構成する個別銘柄の一部を使って指数の予測を試みます。

取引履歴を気にせずにチャート上で直接取引を表示する方法
この記事では、キーナビゲーションを使用してチャート上でポジションと取引を直接便利に表示するためのシンプルなツールを作成します。トレーダーは個々の取引を視覚的に調べ、取引結果に関するすべての情報をその場で受け取ることができるようになります。

最も注目すべき人工協調探索アルゴリズムの修正(ACSm)
ここでは、ACSアルゴリズムの進化、つまり収束特性とアルゴリズムの効率性を向上させることを目的とした3つの変更について検討します。主要な最適化アルゴリズムの1つを変換します。行列の修正から母集団形成に関する革新的なアプローチまでをカバーします。

リプレイシステムの開発(第51回):物事は複雑になる(III)
この記事では、MQL5プログラミングの分野で最も難解な問題の1つである、チャートIDを正しく取得する方法と、オブジェクトがチャートにプロットされない場合がある理由について解説します。ここで提供される資料は教育目的のみに使用されるべきです。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。

ニューラルネットワークが簡単に(第91回):周波数領域予測(FreDF)
周波数領域における時系列の分析と予測を継続的に探求していきます。この記事では、これまでに学習した多くのアルゴリズムに追加できる、周波数領域でデータを予測する新しい方法について説明します。

PSAR、平均足、ディープラーニングを組み合わせて取引に活用する
このプロジェクトでは、ディープラーニングとテクニカル分析の融合を探求し、FXの取引戦略を検証します。EUR/USDの動きを予測するために、PSAR、SMA、RSIのような伝統的な指標とともにONNXモデルを採用し、迅速な実験のためにPythonスクリプトを使用します。MetaTrader 5のスクリプトは、この戦略をライブ環境に導入し、ヒストリカルデータとテクニカル分析を使用して、情報に基づいた取引決定をおこないます。バックテストの結果は、積極的な利益追求よりもリスク管理と着実な成長に重点を置いた、慎重かつ一貫したアプローチを示しています。

MQL5で取引管理者パネルを作成する(第3回):ビジュアルスタイリングによるGUIの強化(I)
この記事では、MQL5を使用して、取引管理パネルのグラフィカルユーザーインターフェイス(GUI)を視覚的にスタイル設定することに焦点を当てます。MQL5で利用できるさまざまなテクニックと機能について説明します。これらのテクニックと機能により、インターフェイスのカスタマイズと最適化が可能になり、魅力的な外観を維持しながらトレーダーのニーズを満たすことができます。

MQL5エキスパートアドバイザーに自動最適化を実装する方法
エキスパートアドバイザー(EA)のためのMQL5の自動最適化のためのステップバイステップガイド。堅牢な最適化ロジック、パラメーター選択のベストプラクティス、バックテストを通じた戦略の再構築方法について解説します。さらに、ウォークフォワード最適化などの高レベルな手法を紹介し、取引アプローチの強化を目指します。

ディープラーニングを用いたCNA(因果ネットワーク分析)、SMOC(確率モデル最適制御)、ナッシュゲーム理論の例
以前の記事で発表されたこれら3つの例にディープラーニング(DL)を加え、以前の結果と比較します。目的は、他のEAにディープラーニングを追加する方法を学ぶことです。

MQL5で取引管理者パネルを作成する(第2回):応答性と迅速なメッセージングの強化
この記事では、以前作成した管理パネルの応答性を強化します。さらに、取引シグナルの文脈におけるクイックメッセージングの重要性についても検討します。

Connexus入門(第1回):WebRequest関数の使い方
この記事は、MQL5でHTTPリクエストを容易にするための「Connexus」と呼ばれるライブラリの開発シリーズの始まりです。このプロジェクトの目標は、エンドユーザーにこの機会を提供し、このヘルパーライブラリーの使い方を示すことです。学習を容易にし、将来の発展の可能性を提供するために、できるだけシンプルにすることを意図しました。

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第3回):Boom 1000アルゴリズムの解読
本連載では、動的な市場状況に自律的に適応できるエキスパートアドバイザー(EA)を構築する方法について説明します。本日の記事では、Derivの合成市場に合わせてディープニューラルネットワークを調整してみます。

MQL5で古典的な戦略を再構築する(後編):FTSE100と英国債
この連載では、人気のある取引戦略を探り、AIを使ってその改善を試みます。今日の記事では、株式市場と債券市場の関係に基づく古典的な取引戦略を再考します。

古典的な戦略を再構築する(第8回):USDCADをめぐる為替市場と貴金属市場
この連載では、よく知られた取引戦略を再検討し、AIを使って改善できるかどうかを検証します。本日のディスカッションでは、貴金属と通貨の間に信頼できる関係があるかどうかを検証します。

人工協調探索(ACS)アルゴリズム
人工協調探索(ACS)は、バイナリ行列と、相互主義的関係と協調に基づく複数の動的な個体群を用いて、最適解を迅速かつ正確に探索する革新的な手法です。捕食者と被食者に対するACS独自のアプローチにより、数値最適化問題で優れた結果を出すことができます。