Errores, fallos, preguntas - página 1834

 
 
Andrey Dik:
No veo ninguna contradicción.
 
transcendreamer:

Puede que ya se haya hecho, pero déjame preguntar:

¿por quéPOSITION_COMMISSION no está resaltado y no aparece en la ayuda?


Esta constante ya no es relevante, pero desgraciadamente no podemos rechazarla. Por eso se deja sin iluminar en el compilador

 
fxsaber:
No veo ninguna contradicción.

¿Contradicción con qué?

He mostrado un saldo negativo en el probador. Además, la equidad iba por debajo de cero. Tengo que suponer que es un error.

 

No entiendo nada, MT5 versión 1545. En versiones anteriores había funciones en el listado Math.mqh:

//+------------------------------------------------------------------+
//| Computes the minimum value in array[]                            |
//+------------------------------------------------------------------+
double MathMin(const double &array[],const int start=0,const int count=WHOLE_ARRAY)
  {
   int size=ArraySize(array);
   int data_count=0;
//--- set data count
   if(count==WHOLE_ARRAY)
      data_count=size;
   else
      data_count=count;
//--- check data range
   if(data_count==0)
      return(QNaN);
   if(start+data_count>size)
      return(QNaN);
//--- set indexes
   int ind1=start;
   int ind2=ind1+data_count-1;
//--- first element by default, find minimum
   double min_value=array[ind1];

   for(int i=ind1+1; i<=ind2; i++)
      min_value=MathMin(min_value,array[i]);
//--- return minimum value
   return(min_value);
  }
//+------------------------------------------------------------------+
//| Computes the maximum value in array[]                            |
//+------------------------------------------------------------------+
double MathMax(const double &array[],const int start=0,const int count=WHOLE_ARRAY)
  {
   int size=ArraySize(array);
   int data_count=0;
//--- set data count
   if(count==WHOLE_ARRAY)
      data_count=size;
   else
      data_count=count;
//--- check data range
   if(data_count==0)
      return(QNaN);
   if(start+data_count>size)
      return(QNaN);
//--- set indexes
   int ind1=start;
   int ind2=ind1+data_count-1;
//--- first element by default, find maximum
   double max_value=array[ind1];

   for(int i=ind1+1; i<=ind2; i++)
      max_value=MathMax(max_value,array[i]);
//--- return maximum value
   return(max_value);
  }
//+------------------------------------------------------------------+
//| Computes the range of the values in array[]                      |
//+------------------------------------------------------------------+
double MathRange(const double &array[],const int start=0,const int count=WHOLE_ARRAY)
  {
   int size=ArraySize(array);
   int data_count=0;
//--- set data count
   if(count==WHOLE_ARRAY)
      data_count=size;
   else
      data_count=count;
//--- check data range
   if(data_count==0)
      return(QNaN);
   if(start+data_count>size)
      return(QNaN);
//--- set indexes
   int ind1=start;
   int ind2=ind1+data_count-1;
//--- default values, find minimum and maximum values
   double min_value=array[ind1];
   double max_value=array[ind1];

   for(int i=ind1+1; i<=ind2; i++)
     {
      double value=array[i];
      min_value=MathMin(min_value,value);
      max_value=MathMax(max_value,value);
     }
//--- return range
   return(max_value-min_value);
  }
//+------------------------------------------------------------------+
//| Computes the sum of the values in array[]                        |
//+------------------------------------------------------------------+
double MathSum(const double &array[],const int start=0,const int count=WHOLE_ARRAY)
  {
   int size=ArraySize(array);
   int data_count=0;
//--- set data count
   if(count==WHOLE_ARRAY)
      data_count=size;
   else
      data_count=count;
//--- check data range
   if(data_count==0)
      return(QNaN);
   if(start+data_count>size)
      return(QNaN);
//--- set indexes
   int ind1=start;
   int ind2=ind1+data_count-1;
//--- calculate sum
   double sum=0.0;
   for(int i=ind1; i<=ind2; i++)
      sum+=array[i];
//--- return sum
   return(sum);
  }
//+------------------------------------------------------------------+
//| Computes the standard deviation of the values in array[]         |
//+------------------------------------------------------------------+
double MathStandardDeviation(const double &array[],const int start=0,const int count=WHOLE_ARRAY)
  {
   int size=ArraySize(array);
   int data_count=0;
//--- set data count
   if(count==WHOLE_ARRAY)
      data_count=size;
   else
      data_count=count;
//--- check data range
   if(data_count<=1)
      return(QNaN);
   if(start+data_count>size)
      return(QNaN);
//--- set indexes
   int ind1=start;
   int ind2=ind1+data_count-1;
//--- calculate mean
   double mean=0.0;
   for(int i=ind1; i<=ind2; i++)
      mean+=array[i];
//--- average mean
   mean=mean/data_count;
//--- calculate standard deviation   
   double sdev=0;
   for(int i=ind1; i<=ind2; i++)
      sdev+=MathPow(array[i]-mean,2);
//--- return standard deviation
   return MathSqrt(sdev/(data_count-1));
  }
//+------------------------------------------------------------------+
//| Computes the average absolute deviation of the values in array[] |
//+------------------------------------------------------------------+
double MathAverageDeviation(const double &array[],const int start=0,const int count=WHOLE_ARRAY)
  {
   int size=ArraySize(array);
   int data_count=0;
//--- set data count
   if(count==WHOLE_ARRAY)
      data_count=size;
   else
      data_count=count;
//--- check data range
   if(data_count<=1)
      return(QNaN);
   if(start+data_count>size)
      return(QNaN);
//--- set indexes
   int ind1=start;
   int ind2=ind1+data_count-1;
//--- calculate mean
   double mean=0.0;
   for(int i=ind1; i<=ind2; i++)
      mean+=array[i];
   mean=mean/data_count;
//--- calculate average deviation
   double adev=0;
   for(int i=ind1; i<=ind2; i++)
      adev+=MathAbs(array[i]-mean);
   adev=adev/data_count;
//--- return average deviation
   return(adev);
  }
//+------------------------------------------------------------------+
//| Computes the median value of the values in array[]               |
//+------------------------------------------------------------------+
double MathMedian(double &array[],const int start=0,const int count=WHOLE_ARRAY)
  {
   int size=ArraySize(array);
   int data_count=0;
//--- set data count
   if(count==WHOLE_ARRAY)
      data_count=size;
   else
      data_count=count;
//--- check data range
   if(data_count==0)
      return(QNaN);
   if(start+data_count>size)
      return(QNaN);
//--- set indexes
   int ind1=start;
   int ind2=ind1+data_count-1;
//--- prepare sorted values
   double sorted_values[];
   ArrayCopy(sorted_values,array,0,start,count);
   ArraySort(sorted_values);
//--- calculate median for odd and even cases
//--- data_count=odd
   if(data_count%2==1)
      return(sorted_values[data_count/2]);
   else
//--- data_count=even
      return(0.5*(sorted_values[(data_count-1)/2]+sorted_values[(data_count+1)/2]));
  }
//+------------------------------------------------------------------+
//| Computes the mean value of the values in array[]                 |
//+------------------------------------------------------------------+
double MathMean(const double &array[],const int start=0,const int count=WHOLE_ARRAY)
  {
   int size=ArraySize(array);
   int data_count=0;
//--- set data count
   if(count==WHOLE_ARRAY)
      data_count=size;
   else
      data_count=count;
//--- check data range
   if(data_count<1)
      return(QNaN); // need at least 1 observation
   if(start+data_count>size)
      return(QNaN);
//--- set indexes
   int ind1=start;
   int ind2=ind1+data_count-1;
//--- calculate mean
   double mean=0.0;
   for(int i=ind1; i<=ind2; i++)
      mean+=array[i];
   mean=mean/data_count;
//--- return mean
   return(mean);
  }
//+------------------------------------------------------------------+
//| Computes the variance of the values in array[]                   |
//+------------------------------------------------------------------+
double MathVariance(const double &array[],const int start=0,const int count=WHOLE_ARRAY)
  {
   int size=ArraySize(array);
   int data_count=0;
//--- set data count
   if(count==WHOLE_ARRAY)
      data_count=size;
   else
      data_count=count;
//--- check data range
   if(data_count<2)
      return(QNaN); // need at least 2 observations
   if(start+data_count>size)
      return(QNaN);
//--- set indexes
   int ind1=start;
   int ind2=ind1+data_count-1;
//--- calculate mean
   double mean=0.0;
   for(int i=ind1; i<=ind2; i++)
      mean+=array[i];
   mean=mean/data_count;
//--- calculate variance
   double variance=0;
   for(int i=ind1; i<=ind2; i++)
      variance+=MathPow(array[i]-mean,2);
   variance=variance/(data_count-1);
//--- return variance
   return(variance);
  }
//+------------------------------------------------------------------+
//| Computes the skewness of the values in array[]                   |
//+------------------------------------------------------------------+
double MathSkewness(const double &array[],const int start=0,const int count=WHOLE_ARRAY)
  {
   int size=ArraySize(array);
   int data_count=0;
//--- set data count
   if(count==WHOLE_ARRAY)
      data_count=size;
   else
      data_count=count;
//--- check data range
   if(data_count<3)
      return(QNaN); // need at least 3 observations
   if(start+data_count>size)
      return(QNaN);
//--- set indexes
   int ind1=start;
   int ind2=ind1+data_count-1;
//--- calculate mean
   double mean=0.0;
   for(int i=ind1; i<=ind2; i++)
      mean+=array[i];
   mean=mean/data_count;
//--- calculate variance and skewness
   double variance=0;
   double skewness=0;
   for(int i=ind1; i<=ind2; i++)
     {
      double sqr_dev=MathPow(array[i]-mean,2);
      skewness+=sqr_dev*(array[i]-mean);
      variance+=sqr_dev;
     }
   variance=(variance)/(data_count-1);
   double v3=MathPow(MathSqrt(variance),3);
//---
   if(v3!=0)
     {
      skewness=skewness/(data_count*v3);
      //--- return skewness
      return(skewness);
     }
   else
      return(QNaN);
  }
//+------------------------------------------------------------------+
//| Computes the kurtosis of the values in array[]                   |
//+------------------------------------------------------------------+
double MathKurtosis(const double &array[],const int start=0,const int count=WHOLE_ARRAY)
  {
   int size=ArraySize(array);
   int data_count=0;
//--- set data count
   if(count==WHOLE_ARRAY)
      data_count=size;
   else
      data_count=count;
//--- check data range
   if(data_count<4)
      return(QNaN); // need at least 4 observations
   if(start+data_count>size)
      return(QNaN);
//--- set indexes
   int ind1=start;
   int ind2=ind1+data_count-1;
//--- calculate mean
   double mean=0.0;
   for(int i=ind1; i<=ind2; i++)
      mean+=array[i];
   mean=mean/data_count;
//--- calculate variance and kurtosis
   double variance=0;
   double kurtosis=0;
   for(int i=ind1; i<=ind2; i++)
     {
      double sqr_dev=MathPow(array[i]-mean,2);
      variance+=sqr_dev;
      kurtosis+=sqr_dev*sqr_dev;
     }
//--- calculate variance
   variance=(variance)/(data_count-1);
   double v4=MathPow(MathSqrt(variance),4);

   if(v4!=0)
     {
      //--- calculate kurtosis
      kurtosis=kurtosis/(data_count*v4);
      kurtosis-=3;
      //--- return kurtosis
      return(kurtosis);
     }
   else
      return(QNaN);
  }

y ahora no están en este listado, miré en otros listados del directorio de Matemáticas, pero tampoco encontré estas funciones allí.

¿Se han eliminado o se han borrado accidentalmente?

 
revisado a la versión 1554 de MT5, la misma historia, estas funciones ya no están presentes
 
luser.2017:
Comprobado hasta la versión 1554 de MT5, la misma historia, estas funciones ya no están allí
Para qué los necesitas ahí si tienes todo el conjunto de funciones matemáticas.
Документация по MQL5: Математические функции
Документация по MQL5: Математические функции
  • www.mql5.com
Математические функции - справочник по языку алгоритмического/автоматического трейдинга для MetaTrader 5
 
Alexey Viktorov:
Para qué los necesitas ahí si tienes todo el conjunto de funciones matemáticas.


Antes de responder, compáralo con los que publiqué en el listado. Por cierto, estas funciones aparecen en la ayuda de la biblioteca estándar, por lo que es más probable que alguien las haya borrado accidentalmente.

 
Konstantin:


Antes de responder, compáralo con los que publiqué en el listado. Por cierto, estas funciones aparecen en la ayuda de la biblioteca estándar, por lo que es más probable que alguien las haya borrado accidentalmente.


La respuesta de servicedesk, las funciones de datos de la biblioteca estándar se han eliminado a propósito, el problema está resuelto. También hay que poner en línea la ayuda, porque a veces se pierde tiempo buscando algo que ya no está en la funcionalidad.
 

¿Cómo puede ser esto? ¡Abro una cuenta demo en un servidor de la empresa btc-e.com, pero se abre en un servidor completamente diferente de otra empresa!