文章 "神经网络变得轻松(第三十三部分):分布式 Q-学习中的分位数回归" 新评论 MetaQuotes 2023.03.28 08:52 新文章 神经网络变得轻松(第三十三部分):分布式 Q-学习中的分位数回归已发布: 我们继续研究分布式 Q-学习。 今天我们将从另一个角度来看待这种方式。 我们将研究使用分位数回归来解决价格预测任务的可能性。 利用 NetCreator 工具创建了一个训练模型。 模型的体系结构与来自上一篇文章中训练模型的体系结构相同。 我删除了最后一个 SoftMax 规范化层,以便模型结果区域可以复制所用奖励策略的任何结果。 与以前一样,该模型是基于 EURUSD 历史数据、H1 时间帧上进行训练的。 训练数据集采用过去 2 年的历史数据。 训练模型的工作是在策略测试器中进行测试。 为测试目的创建了一个单独的 EA QRDQN-learning-test.mq。 该 EA 也是在之前文章中的类似 EA 的基础上创建的。 其代码没有太大变化。 附件中提供了其完整代码。 在策略测试器中,该模型展示了在 2 周的短期内产生盈利的能力。 超过一半的交易以盈利平仓。 每笔交易的平均盈利几乎是平均亏损的两倍。 作者:Dmitriy Gizlyk 新评论 您错过了交易机会: 免费交易应用程序 8,000+信号可供复制 探索金融市场的经济新闻 注册 登录 拉丁字符(不带空格) 密码将被发送至该邮箱 发生错误 使用 Google 登录 您同意网站政策和使用条款 如果您没有帐号,请注册 可以使用cookies登录MQL5.com网站。 请在您的浏览器中启用必要的设置,否则您将无法登录。 忘记您的登录名/密码? 使用 Google 登录
新文章 神经网络变得轻松(第三十三部分):分布式 Q-学习中的分位数回归已发布:
我们继续研究分布式 Q-学习。 今天我们将从另一个角度来看待这种方式。 我们将研究使用分位数回归来解决价格预测任务的可能性。
利用 NetCreator 工具创建了一个训练模型。 模型的体系结构与来自上一篇文章中训练模型的体系结构相同。 我删除了最后一个 SoftMax 规范化层,以便模型结果区域可以复制所用奖励策略的任何结果。
与以前一样,该模型是基于 EURUSD 历史数据、H1 时间帧上进行训练的。 训练数据集采用过去 2 年的历史数据。
训练模型的工作是在策略测试器中进行测试。 为测试目的创建了一个单独的 EA QRDQN-learning-test.mq。 该 EA 也是在之前文章中的类似 EA 的基础上创建的。 其代码没有太大变化。 附件中提供了其完整代码。
在策略测试器中,该模型展示了在 2 周的短期内产生盈利的能力。 超过一半的交易以盈利平仓。 每笔交易的平均盈利几乎是平均亏损的两倍。
作者:Dmitriy Gizlyk