文章 "深度神经网络 (第五部分)。 DNN 超参数的贝叶斯优化"

 

新文章 深度神经网络 (第五部分)。 DNN 超参数的贝叶斯优化已发布:

本文研究利用贝叶斯优化深度神经网络 (DNN) 超参数,获取各种训练变体的可能性。 比较不同训练变体中最优超参数 DNN 的分类品质。 DNN 最优超参数的有效性的深度已在前瞻性测试中得以验证。 改善分类品质的可能方向也已确定。

结果很好。 我们来绘制训练历史图:

plot(env$Res1$Dnn.opt, type = "class")

SRBM + RP

图例 2. 由 SRBM + RP 变体训练的 DNN 历史

从图中可以看出,验证集合上的误差小于训练集合上的误差。 这意味着该模型没有过度配置,具有优良的泛化能力。 红色垂线表示模型的结果被认为是最好的,并在训练后作为结果返回。

对于其他它三种训练变体,将仅提供计算结果和历史图表,而不提供进一步的细节。 一切计算都与此类似。

作者:Vladimir Perervenko

 
具体怎么使用呢,怎么把我的交易系统也整理成神经网络  或者一个比较复杂的EA自动化交易