Обсуждение статьи "Роль качества генератора случайных чисел в эффективности алгоритмов оптимизации" - страница 11
Вы упускаете торговые возможности:
- Бесплатные приложения для трейдинга
- 8 000+ сигналов для копирования
- Экономические новости для анализа финансовых рынков
Регистрация
Вход
Вы принимаете политику сайта и условия использования
Если у вас нет учетной записи, зарегистрируйтесь
Здесь ты сам отвечаешь на свой вопрос, сколько минимум перезапусков должно быть примерно для сравнения разных ГСЧ. Это как раз то, о чем я написал и ты это потом почистил.
Ты демонстрируешь невежество в теме, разберись сначала с разницей между запусками и перезапусками. Мой пост об эмпирическом правиле выбора количества запусков ФФ для алгоритмов оптимизации, т.е. сколько нужно запустить фитнес-функцию для обеспечения приемлемой сходимости алгоритмов оптимизации. В тестах я использую 10000 тысяч запусков фитнес-функции, что соответствует 10^4. В данной статье рассматривалось влияние качества ГСЧ на результаты оптимизации при этих самых 10000 запусков фитнес-функции в составе алгоритмов оптимизации, влияния качества ГСЧ не выявлено, о чем и сказано в выводах к статье.
А для сравнения ГСЧ между собой проведён тест на равномерность распределения случайных чисел, с гораздо большим числом запусков ГСЧ, чем 10^4.
2024.03.18 20:54:33.459 Standard, 100000000 throws, 10000 boxes
Т.е, 100000000 = 10^8!
Пожалуйста, не пиши в комментариях к моим статьям больше.
Ты демонстрируешь невежество в теме, разберись сначала с разницей между запусками и перезапусками. Мой пост об эмпирическом правиле выбора количества запусков ФФ для алгоритмов оптимизации, т.е. сколько нужно запустить фитнес-функцию для обеспечения приемлемой сходимости алгоритмов оптимизации. В тестах я использую 10000 тысяч запусков фитнес-функции, что соответствует 10^4. В данной статье рассматривалось влияние качества ГСЧ на результаты оптимизации при этих самых 10000 запусков фитнес-функции в составе алгоритмов оптимизации, влияния качества ГСЧ не выявлено, о чем и сказано в выводах к статье.
А для сравнения ГСЧ между собой проведён тест на равномерность распределения случайных чисел, с гораздо большим числом запусков ГСЧ, чем 10^4.
2024.03.18 20:54:33.459 Standard, 100000000 throws, 10000 boxes
Т.е, 100000000 = 10^8!
Пожалуйста, не пиши в комментариях к моим статьям больше.
Чтобы сравнить один и тот же алг. оптимизации с разными ГСЧ, нужно сделать примерно столько же его перезапусков, а не 5. Чем больше тем лучше. Тогда будет понятно, какой ГСЧ в среднем лучше/хуже/Как влияет.
5 это количество тестов. Алгоритмы оптимизации дают разброс в результатах больше, чем видимая разница от применения разных ГСЧ.
Вначале ты утверждал, в удалённых постах ранее, что влияния ГСЧ и не должно быть, а сейчас утверждаешь, что влияние есть, но оно не выявлено в тестах? Ты путаешься в показаниях.
Еще раз повторяю, проведи самостоятельно тесты и либо опровергни мои выводы либо подтверди их. Весь инструментарий для тестов я предоставил. Голословные утверждения здесь никому не интересны, мои статьи для применения на практике, а не ради теории в вакууме.
Пожалуйста, не пиши в комментариях к моим статьям больше.
5 это количество тестов. Алгоритмы оптимизации дают разброс в результатах больше, чем видимая разница от применения разных ГСЧ.
Вначале ты утверждал, в удалённых постах ранее, что влияния ГСЧ и не должно быть, а сейчас утверждаешь, что влияние есть, но оно не выявлено в тестах? Ты путаешься в показаниях.
Еще раз повторяю, проведи самостоятельно тесты и либо опровергни мои выводы либо подтверди их. Весь инструментарий для тестов я предоставил.
Пожалуйста, не пиши в комментариях к моим статьям больше.
Мне бы подошел даже такой лобовой вариант. Но не понимаю, как определить область выкалывания в многомерном пространстве?
Есть мысли, как по вычисленным значениям (пусть их будет 10 000 штук) ФФ определить область найденного глобального пика? Чтобы на следующей итерации ФФ в этой области насильно делать -DBL_MAX.
Для этого идеально подходит класс алгоритмов Expectation Maximization (в общем) и Gaussian Mixture Model (в частности). Он выделит все холмики как отдельные кластеры, после чего можно любой из них обнулить.
К сожалению, на MQL5 этого нет, даже в ALGLIB. Пока можно тянуть из питона. Если есть желание - материалы на этом сайте тоже подойдут.
Для этого идеально подходит класс алгоритмов Expectation Maximization (в общем) и Gaussian Mixture Model (в частности). Он выделит все холмики как отдельные кластеры, после чего можно любой из них обнулить.
К сожалению, на MQL5 этого нет, даже в ALGLIB. Пока можно тянуть из питона. Если есть желание - материалы на этом сайте тоже подойдут.
Вопрос в том, что дальше делать с набором этих сетов с вершинами "холмов". Раньше мы имели один глобальный максимум как решение алгоритма оптимизации, допустим теперь их 50. Но они не приближают к решению проблемы устойчивости.
Ну, мы же не знаем, зачем Сабер ищет пики (возможно, расскажет), в его постановке задачи может быть это и есть способ нахождения робастных решений.
На схеме, которую я приводил ранее, как считаете, какой элемент в схеме влияет на нахождение робастного решения (робастного Result)?
На схеме, которую я приводил ранее, как считаете, какой элемент в схеме влияет на нахождение робастного решения (робастного Result)?
В моем представлении, тут его нет.
В моем представлении, тут его нет.