Matstat Econometria Matan - página 34

 

Na essência, a natureza não universal da métrica da taxa de vitória significa que o modelo de equidade por detrás dela é não universal como uma SB discreta. Por conseguinte, é comum utilizar um SB contínuo para a equidade, como um modelo mais universal. Há aqui dois parâmetros, deriva e variação, pelo que podem ser feitas duas métricas independentes. Por exemplo, é a razão de deriva para a raiz da variância (Sharpe) e a razão de deriva para a variância. Sharpe é conveniente na medida em que não muda com mudanças no volume (mas muda com mudanças no intervalo de tempo, por isso é normalmente anualizado). A segunda métrica não muda quando o intervalo de tempo muda (mas muda quando o volume muda) e é determinante no cálculo do drawdown.

Este modelo de equidade também não é universal. Não pode ser utilizado quando a variação dos incrementos não é limitada - martingale, sobre-saturação, etc.

 
Aleksey Nikolayev #:

... geralmente por equidade, como modelo mais universal, utilizar um SB com demolição, com tempo contínuo. ...

Este modelo de equidade também não é absolutamente universal. ...

No entanto, é desejável que a equidade seja calculada de acordo com este modelo. No mínimo, é necessário para a carteira de sistemas.

Isto leva ao aparecimento de métricas auxiliares que, em certo sentido, medem a adequação da equidade a este modelo. Por exemplo, estes são o nível de significância que a deriva é positiva e/ou o nível de significância que não há correlação entre os incrementos.

 
Não é tudo igual, quer o tempo seja discreto ou contínuo?)
O contínuo pode sempre ser discretizado e o discreto pode sempre ser interpolado.
No DSP, por exemplo, não há diferença.
 
secret #:
Não faz a mesma diferença se o tempo é discreto ou contínuo?)
O contínuo pode sempre ser discretizado e o discreto pode sempre ser interpolado.
No DSP, por exemplo, não há diferença.

Sim, pegar nos dados diários, interpolá-los e depois discrepá-los em dados minuciosos) Quem precisa desses carrapatos?)

 
Aleksey Nikolayev #:

Sim, pegar nos dados diários, interpolá-los e depois discrepá-los em dados minuciosos) Quem precisa desses carrapatos)

Se recolher dados diariamente, significa que tem uma duração média de transacção de cerca de vários meses.
 
secret #:
Se recolher dados diariamente, então tem uma duração média de transacção da ordem de alguns meses.

Assim, a interpolação e a amostragem DSP não dão a possibilidade de obter de uma amostra de outra, por exemplo, uma amostragem mais fina.

O objectivo da utilização de modelos de tempo contínuo é a possibilidade potencial de obter qualquer amostra de interesse. Não necessariamente uniforme no tempo - equibrium, renko, etc. etc.

 
Com carraças, pode obter a discretização que quiser. E não há tempo contínuo no mercado.
 
secret #:
Com carraças pode obter a discretização que quiser. E não há tempo contínuo no mercado.

Sim, tecnicamente o tempo é discreto, mas apenas devido à imprecisão (ou precisão suficiente na prática) na sua medição (tal como qualquer outra quantidade física contínua em medições reais). O preço por unidade de um bem, por exemplo, é, pelo contrário, intrinsecamente discreto.

No entanto, na matemática financeira moderna, os modelos de tempo contínuo são básicos.

 
O tempo de mercado é discreto porque o fluxo de eventos do mercado é discreto - uma ordem, uma transacção.
 
Aleksey Nikolayev #:

No entanto, os modelos de tempo contínuo são básicos na matemática financeira moderna.

Não faz sentido interpolar nada entre duas carraças, uma vez que o que acontece entre carraças é determinado por um fluxo discreto mais detalhado de eventos no Nível 2 e no Nível 3.