una estrategia de negociación basada en la teoría de las ondas de Elliott - página 37
Está perdiendo oportunidades comerciales:
- Aplicaciones de trading gratuitas
- 8 000+ señales para copiar
- Noticias económicas para analizar los mercados financieros
Registro
Entrada
Usted acepta la política del sitio web y las condiciones de uso
Si no tiene cuenta de usuario, regístrese
El único problema es la imposibilidad de obtener un valor inferior a 0,5 en muestras grandes.
Hoy he leído un artículo sencillo y claro, sobre el índice Hearst y su cálculo, del que se desprenden varias cosas. En primer lugar, no se puede contar pX como una fracción de logaritmos para todo el conjunto de datos a la vez. El denominador debe ser Lg(aN), donde a es una constante desconocida. Suponer que a=0,5 es arbitrario. Para la distribución normal a=pi/2. Por eso es necesario leer Lg(R/S) en función de Lg(N) y luego aproximar esta dependencia por regresión lineal. Entonces H es el ángulo de la pendiente y el coeficiente a es el término libre de la regresión. Incluso si a=0,5, este algoritmo debería dar resultados diferentes.
En segundo lugar, toda la teoría sólo es aplicable a una serie de datos básicos, es decir, una serie de precios, por ejemplo. Es incorrecto aplicarlo a la serie de errores de regresión lineal (es decir, a la serie de la que se ha eliminado el componente de tendencia). Para una serie de este tipo, ni la dispersión ni la pendiente (especialmente en un intervalo finito) dependen del tiempo.
Saludos - Alexander.
En 2 palabras "sobre ladrillos" explicar todo lo escrito en los libros es probablemente imposible. Sólo puedo intentar responder a sus preguntas concretas.
Por la palabra INDIRECCIÓN entendemos el concepto "soviético" de DIRECCIÓN de la función, por el que se aproxima una serie de precios a la propia serie. Es decir, si el precio se mueve alrededor de una línea que se asemeja a una parábola, por ejemplo, entonces la parábola se llama el mejor CLIMIT. Si quieres, puedes pensar que la tendencia principal sigue una parábola. Así que en este caso es obvio que si la función aproximadora es una línea recta, mientras que la tendencia sigue claramente una parábola, podemos decir que la línea recta es un CLIMIT anormal.
Unos 30 bares. Me refiero al número mínimo de barras de la propia muestra en el que los datos de cálculo de, por ejemplo, los parámetros de las ecuaciones de regresión, etc., que se obtendrán sobre su base, tendrán algún valor en términos estadísticos (fiabilidad de los cálculos). Es decir, si se toma un número menor de barras de muestreo, los parámetros que se calculen pueden denominarse parámetros obtenidos por azar y no se puede confiar en ellos. Al aumentar el número de barras de muestra, aumenta la credibilidad de los parámetros a calcular. También hay que tener en cuenta que para CUALQUIER número de barras de muestra, TODOS los parámetros que se obtengan en los cálculos tendrán a su vez alguna variación en términos de credibilidad. Es decir, puedes utilizar las fórmulas del libro para calcular, por ejemplo, que el coeficiente a de la ecuación de regresión lineal es igual a 5 más/menos 1 con una probabilidad del 99%. Es decir, te dice que el parámetro que has calculado no es realmente igual a 5 exactamente, sino que es igual en el 99% de los casos al valor entre 4 y 6 y sólo en el 1% de los casos a puede tomar valores más allá de este rango 4 y 6. Y este rango se va estrechando a medida que aumenta el número de barras de la muestra, en la que se encontrará el 99% de los casos. Hay fórmulas en el libro que se pueden utilizar para calcular este rango de valores, llamado intervalo de confianza.
Entiendo: si divido condicionalmente el canal LR que está más cerca de algo (desde mi comprensión correcta o incorrecta de la aproximación), entonces el Intervalo de Confianza es el punto donde se encuentra el precio actual en relación con la anchura del canal en % ratio o en otras palabras "por ejemplo si tomamos la parte inferior del canal LR como 0 y la parte superior como 1, el precio está en algún lugar md 0,01< precio<1"
Por favor, explique, si algo está mal.
Si se toma la ecuación de regresión lineal y=ax+b, entonces, como dije antes, cada parámetro de la ecuación tiene su propia extensión, que se calcula con las fórmulas del libro. Además del parámetro a, el parámetro b tiene su propia dispersión (el intervalo en el que se encuentra realmente). Es decir, por ejemplo, b=10 más/menos 3. Se encuentra en el intervalo 7...13.
Si exceptuando la ecuación de regresión lineal y=ax+10, se trazan dos ecuaciones más y=ax+7 e y=ax+13, el área entre la línea superior y la inferior se llamará intervalo de confianza. ¡El intervalo de confianza (dispersión del parámetro) para intervalos con diferente probabilidad de confianza será DIFERENTE! Es decir, sin pensar en los coeficientes específicos, puedo dar el siguiente ejemplo con los dedos. Tomemos el mismo parámetro b=10. Entonces, por ejemplo, la probabilidad de que este parámetro calculado se encuentre realmente en el rango 9...11 es del 60%, en el rango 8...12 es del 80%, en el rango 7...13 del 90%, etc. En realidad, las cifras se toman del techo: los valores correctos deben calcularse mediante fórmulas. Así que la cuestión es que cuanto más seguro queramos conocer el parámetro, más amplio deberá ser el intervalo de confianza. En consecuencia, con una probabilidad baja tenemos un rango estrecho de valores con una probabilidad alta - un rango amplio de valores.
Es decir, el canal se traza desde la línea de regresión central en ambas direcciones. Y la probabilidad se aplica exactamente a esta área simétrica con respecto a la ecuación de regresión estimada.
En general, Vladislav quería decir exactamente lo mismo que está escrito en el libro de Peterson "Chaos and Order in Capital Markets". En pocas palabras, lo esencial es lo siguiente. La UE, tras una cierta moratoria, ha empezado a subir los tipos de interés del euro. Puedes ver y comprobar que desde ese mismo momento el euro empezó a subir frente al dólar. Aunque el tipo de cambio no ha subido mucho, pero en general los operadores tenían la opinión de que "el euro debería empezar a crecer ahora", que ha estado circulando en sus cabezas durante 4 meses. Así que, se quieran dar cuenta o no, los operadores han estado presionando al euro durante mucho tiempo. Es decir, cada operación posterior aumenta la cotización del euro, aunque creo que el 99% de los operadores dirían que se han olvidado de lo que pasó hace 4 meses. Sin embargo, ¡funciona! Pues bien, en las últimas semanas, el crecimiento del euro se ha ralentizado, ya que los operadores empiezan a olvidar realmente por qué estuvieron presionando al alza al euro durante tanto tiempo. Y ahora el mercado está esperando algo nuevo, que le dé dirección. Y es mejor que sea la noticia, con la que la mayoría de los operadores están de acuerdo. Dado que las series de precios con diferente número de barras pueden ser aproximadas por diferentes funciones, además del evento global que formó la dirección a largo plazo de la tendencia del euro, hay una gran cantidad de eventos locales debido a los cuales el precio salta alrededor de la tendencia principal. Por lo tanto, los eventos débiles tienen menos influencia, los eventos más grandes tienen una mayor influencia. Así, el movimiento de los precios se verá influido por la suma de estas influencias.
Por error se entiende el error entre la función de aproximación y la serie de precios reales. Por supuesto, si ejecutó una regresión lineal en una muestra que también contiene una parábola, el gráfico de error mostrará la misma parábola que no tuvo en cuenta. Y tendrás que restar la parábola de los errores resultantes para estimar parámetros estadísticos como el RMS, que es uno de los coeficientes al calcular el intervalo de confianza.
Para ti es mejor escribir la ecuación de la siguiente forma Precio=a*Tiempo^2+b*Tiempo+s
No puedo explicarlo con más detalle.
no está claro cuál es el prefijo: 1. sólo el precio relativo a la barra actual a la derecha; 2. la BARRA superior/inferior del canal LI en la barra actual o relativa a la barra actual a la derecha
El límite de predicción es la zona en la que se cruzan los límites de los intervalos de confianza de los distintos canales. Ahí es donde se cruzan, ahí es donde debe girar el precio.
La proyección es una continuación a la derecha de la línea de regresión lineal y los bordes del canal (líneas rectas superiores e inferiores o curvas paralelas a la línea central (ver explicaciones anteriores)).
Considera la parte de los 2/3 como un axioma (como verdad) y deja el resto fuera - no importa aquí.
Se han construido intervalos de confianza. En CUALQUIER punto puedes utilizar las fórmulas del libro para averiguar en qué límite del intervalo de confianza se encuentra ese punto. Por ejemplo, se apunta con el dedo a un punto sin mirar. Supongamos que se ha perdido el canal para el que se quiere estimar la probabilidad. Y el canal fue construido para un nivel con un 99,9% de probabilidad. Por lo tanto, en relación con el punto que se perdió y no entró en el canal en absoluto, podemos decir que la probabilidad de que este punto esté en este canal no es superior al 0,1%. Esto significa que si el punto que ha pinchado tuviera un precio real, la probabilidad de este caso no superaría el 0,1%. Ahora bien, ¿qué debe hacer el precio cuando llegue a este punto? Probablemente, no es difícil adivinar que en el menor tiempo posible debería haber regresado al canal. Entonces es una cuestión de técnica: mirar el canal y el dedo y dar órdenes. Y luego todo sucede por el mismo algoritmo para el caso cuando se golpea el canal en sí. A través del punto del canal de la regresión lineal que ha pulsado, puede dibujar una línea que sea el límite de un determinado intervalo de confianza. ¿Y luego sólo tienes que usar las fórmulas del libro para averiguar qué canal? Cuál era el intervalo de confianza. Supongamos que lo ha calculado y ha comprendido que la probabilidad es del 75%, entonces puede deducir que la probabilidad de encontrar el precio fuera del canal es del 25%, y dentro del canal - del 75%. Y puede sacar conclusiones sobre el rumbo que puede tomar el precio.
En realidad, en cuanto a las formas cuadráticas, propuse una similitud con la utilizada por Vladislav. Utiliza una forma cuadrática de la forma F(x,t)=Ax^2+Bt^2+C y también utiliza un gradiente de campo. De alguna manera encuentra los centros de estas formas cuadráticas en el plano y los coeficientes de la ecuación misma, lo que le permite determinar fácilmente las fluctuaciones del gradiente del campo potencial, a partir de las cuales saca conclusiones sobre el potencial de campo (o más bien sus fluctuaciones). Y permite no recoger la propia parábola. He visto en libros sobre ello, pero cómo aplicarlo en nuestro caso aún no lo entiendo :o(. Es decir, la cuestión es la siguiente. Imagina un terreno en el que se encuentran estos conos de colina elípticos. Estas colinas se combinan entre sí de diferentes maneras. Así que la tendencia se mueve en aquellos lugares donde un cono se cruza con el otro. Todavía no sé cómo calcular esto. Hasta ahora he propuesto una ecuación de parábola más comprensible para mí. Y lo hace de otra manera.
Francamente, no se me ocurre nada que añadir a lo que ya he dicho. Tanto más cuanto que en este foro se discute razonablemente que este indicador no tiene ninguna relación con la previsión. Bueno, como dicen, cada uno tiene derecho a su propia opinión.
https://c.mql5.com/mql4/forum/2006/06/ang_error.zip
Lamentablemente, el foro mql4 no puede adjuntar directamente archivos gif por alguna razón. No puedo ni imaginar por qué razón. Sólo puedo subir archivos zip al foro perfectamente. Antes podía pegar imágenes gif en el mismo hilo sin problemas, pero desde que se mudaron a un nuevo motor es como si el gif se hubiera cortado, al menos desde mi ordenador. Inserta el archivo C:\temp\ang_error.gif pero el mensaje se inserta sin el archivo. Bueno, bueno, vamos a trabajar como resulta.
Pues bien, el EURUSD H4 muestra que el coeficiente del término X^2 parece estar tomado con el signo contrario. ¿Cómo se produce? ¿Tal vez, el algoritmo comete esos errores? ¿Podemos simplemente añadir una comprobación adicional del indicador por MOC en dos variantes del coeficiente y mostrar la que simplemente muestra un valor de error menor en el gráfico?
El hecho es que la tendencia a lo largo de una parábola es muy aproximada. Más bien es una combinación de un conjunto de parábolas y canales rectilíneos. Si se intenta extrapolar una parábola, ésta puede ir bruscamente hacia el "espacio" o hacer un sacacorchos hacia el "suelo". En realidad, en mi opinión, una aproximación mejor, aunque más difícil, basada en métodos ondulatorios, en particular basados en la descomposición de la tendencia en series armónicas de Fourier. Entiendo a VG. Es mucho más fácil calcular y hacer autómatas basados en líneas, pero eso no significa que sea mejor. Aunque si se hace de forma competente, los resultados serán probablemente mucho mejores que si se intenta utilizar los métodos tradicionales, que son los que más se utilizan en el análisis técnico hoy en día. La mayoría de los métodos de análisis técnico se desarrollaron hace años en los mercados lentos, principalmente para los días. Lo que puedes hacer ahora en el ordenador: creo que el tío Gunn lloraría de felicidad. Así que respira hondo y sonríe mucho.
Le deseo que tenga éxito en sus operaciones y que se dé cuenta rápidamente de la inquietud del negocio.
Saludos - Alexander.
2006.06.05 12:07:54 ang_script EURUSDm,M30: valor de tiempo no válido para la función ObjectMove
¿Tal vez habría que hacer algo más que ejecutarlo en un gráfico?
Intenta descargar la versión de MT4 desde este servidor, y abre una cuenta demo.
O incluso mejor bild pre194. Acabo de comprobarlo, todo funciona bien.
Rosh, en principio la derivación de las propias ecuaciones es obvia. Todo está claro con él. Pero entiendo que estás usando promedios para x e y. Es decir, simplemente se resuelve una ecuación por métodos de álgebra lineal. Pero lo que no entiendo es lo siguiente. ¿Es realmente posible sustituir las medias de las muestras en estas fórmulas y obtener exactamente lo que necesitamos? ¿Podría dar una prueba de ello?
¿El indicador ANG3110 funciona según este principio?
Creo que sería más lógico resolver N sistemas de este tipo para N barras y a partir de la muestra de matrices obtenidas a,b,c determinar la expectativa de cada parámetro y utilizarla como parámetro para aproximar la parábola. ¿O me equivoco?
¡Ahora todo está claro en cuanto a la solución!