Jonathan Pereira
Jonathan Pereira
4.7 (47)
  • 信息
5+ 年
经验
5
产品
5
演示版
58
工作
0
信号
0
订阅者
Como Desenvolvedor de Sistemas dedicado e apaixonado, adoro me aventurar no mundo da programação, tanto profissionalmente quanto em meu tempo livre. Dominando Java, Python e MQL5, minha experiência se estende a outras áreas, como SQL, bancos de dados relacionais e não relacionais, PySpark, Hadoop, machine learning, deep learning (utilizando Keras, TensorFlow, Pandas e NumPy), DevOps, engenharia de dados e arquitetura.

Foi em 2016 que, por um feliz acaso, me deparei com o mercado financeiro e me encantei instantaneamente. Ao descobrir a plataforma MetaTrader e sua capacidade de integrar estratégias codificadas ao mercado financeiro, soube que tinha encontrado um novo amor.

Explore meus tutoriais no GitHub e acompanhe minha jornada de crescimento e compartilhamento de conhecimento: https://github.com/jowpereira/mql5-tutoriais

Se desejar iniciar um novo projeto e aproveitar minha expertise, acesse: https://www.mql5.com/pt/job/new?prefered=14134597.

Tenho certeza de que, juntos, podemos desenvolver soluções interessantes e inspiradoras!

Conheça meu GPT - https://chat.openai.com/g/g-1DCzqDcMF-arnaldo
Jonathan Pereira
已发布文章Desenvolvendo um agente de Aprendizado por Reforço em MQL5 com Integração RestAPI (Parte 5): Escolhendo o Algoritmo do agente
Desenvolvendo um agente de Aprendizado por Reforço em MQL5 com Integração RestAPI (Parte 5): Escolhendo o Algoritmo do agente

Este capítulo da série aborda algoritmos de aprendizado por reforço, focando em Q-Learning, Deep Q-Network (DQN), e Proximal Policy Optimization (PPO). Explora como essas técnicas podem ser integradas para melhorar a automação de tarefas, detalhando suas características, vantagens, e aplicabilidades práticas. A seleção do algoritmo mais adequado é vista como crucial para otimizar a eficiência operacional em ambientes dinâmicos e incertos, prometendo discussões futuras sobre a implementação prática e teórica desses métodos.

1
Jonathan Pereira
已发布文章开发具有 RestAPI 集成的 MQL5 强化学习代理(第 4 部分):在 MQL5 中组织类中的函数
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 4 部分):在 MQL5 中组织类中的函数

本文讨论 MQL5 中从面向过程编码向面向对象编程 (OOP) 的过渡,重点是与 REST API 的集成。今天,我们将讨论如何将 HTTP 请求函数(GET 和 POST)组织到类中。我们将仔细研究代码重构,并展示如何用类方法替换孤立的函数。本文包含实用的示例和测试。

Jonathan Pereira 已发布产品

90.00 USD

Operating Principle: The "RSDForce" merges trading volume analysis and price movements to provide valuable market insights. Here's how it works: Volume and Price Analysis : The indicator examines the trading volume (quantity of traded assets) and price variations over time. Market Force Calculation : It calculates a value that reflects the market's 'force', indicating whether the price trend is strong and based on substantial trading volume. Simple Visualization : The result is displayed as a

Jonathan Pereira 已发布产品

The "ZScore Quantum Edge" is based on an advanced algorithm that combines volume analysis and price movement, providing a clear and accurate representation of market trends. Key Features: In-Depth Trend Analysis : The indicator uses a configurable period for trend analysis, allowing traders to adjust the indicator's sensitivity according to their trading strategies. Data Smoothing : With an adjustable range for data smoothing, the "ZScore Quantum Edge" offers a clearer view of the market

Jonathan Pereira
已发布文章开发具有 RestAPI 集成的 MQL5 强化学习代理(第 3 部分):在 MQL5 中创建自动移动和测试脚本
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 3 部分):在 MQL5 中创建自动移动和测试脚本

本文讨论在 Python 中实现井字游戏中的自动移动,并与 MQL5 函数和单元测试集成。目标是通过在 MQL5 中进行测试,提高游戏的互动性并确保系统的可靠性。本文内容包括游戏逻辑开发、集成和实际测试,最后将介绍动态游戏环境和强大集成系统的创建。

Jonathan Pereira
已发布文章开发具有 RestAPI 集成的 MQL5 强化学习代理(第 2 部分):用于与井字游戏 RestAPI 进行 HTTP 交互的 MQL5 函数
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 2 部分):用于与井字游戏 RestAPI 进行 HTTP 交互的 MQL5 函数

在本文中,我们将讨论 MQL5 如何与 Python 和 FastAPI 交互,使用 MQL5 中的 HTTP 调用与 Python 开发的井字游戏交互。这篇文章讨论了使用 FastAPI 为这种集成创建一个 API,并提供了一个 MQL5 测试脚本,突出了 MQL5 的多功能性、Python 的简易性以及 FastAPI 在连接不同技术以创建创新解决方案方面的效果。

Jonathan Pereira
已发布文章开发具有 RestAPI 集成的 MQL5 强化学习代理(第 1 部分):如何在 MQL5 中使用 RestAPI
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 1 部分):如何在 MQL5 中使用 RestAPI

在本文中,我们将讨论 API(Application Programming Interface,应用程序编程接口)对于不同应用程序和软件系统之间交互的重要性。我们将看到 API 在简化应用程序间交互方面的作用,使它们能够有效地共享数据和功能。

Jonathan Pereira
已发布文章将ML模型与策略测试器集成(结论):实现价格预测的回归模型
将ML模型与策略测试器集成(结论):实现价格预测的回归模型

本文描述了一个基于决策树的回归模型的实现。该模型应预测金融资产的价格。我们已经准备好了数据,对模型进行了训练和评估,并对其进行了调整和优化。然而,需要注意的是,该模型仅用于研究目的,不应用于实际交易。

Jonathan Pereira
已发布文章将 ML 模型与策略测试器集成(第 3 部分):CSV(II)文件管理
将 ML 模型与策略测试器集成(第 3 部分):CSV(II)文件管理

这篇资料提供了以 MQL5 创建类,从而高效管理 CSV 文件的完整指南。 我们将看到打开、写入、读取、和转换数据等方法的实现。 我们还将研究如何使用它们来存储和访问信息。 此外,我们将讨论使用该类的限制和最重要的方面。 本文对于那些想要学习如何在 MQL5 中处理 CSV 文件的人来说是一个宝贵的资源。

Jonathan Pereira
已发布文章多层感知器和反向传播算法(第 3 部分):与策略测试器集成 - 概述(I)
多层感知器和反向传播算法(第 3 部分):与策略测试器集成 - 概述(I)

多层感知器是简单感知器的演变,可以解决非线性可分离问题。 结合反向传播算法,可以有效地训练该神经网络。 在多层感知器和反向传播系列的第 3 部分当中,我们将见识到如何将此技术集成到策略测试器之中。 这种集成将允许使用复杂的数据分析,旨在制定更好的决策,从而优化您的交易策略。 在本文中,我们将讨论这种技术的优点和问题。

· 3 1086
Jonathan Pereira
已发布文章多层感知器和反向传播算法(第二部分):利用 Python 实现并与 MQL5 集成
多层感知器和反向传播算法(第二部分):利用 Python 实现并与 MQL5 集成

有一个 Python 程序包可用于开发与 MQL 的集成,它提供了大量机会,例如数据探索、创建和使用机器学习模型。 集成在 MQL5 内置的 Python,能够创建各种解决方案,从简单的线性回归、到深度学习模型。 我们来看看如何设置和准备开发环境,以及如何使用一些机器学习函数库。

· 5 4821
Jonathan Pereira 已发布产品
评论: 1
FREE

Tillson's T3 moving average was introduced to the world of technical analysis in the article ''A Better Moving Average'', published in the American magazine Technical Analysis of Stock Commodities. Developed by Tim Tillson, analysts and traders of futures markets soon became fascinated with this technique that smoothes the price series while decreasing the lag (lag) typical of trend-following systems

Jonathan Pereira 已发布产品
评论: 1
FREE

Volume is a widely used indicator in technical analysis, however there is a variation that is even more useful than Volume alone: the Moving Average of Volume. It is nothing more than a moving average applied to the popular Volume indicator. As the name says, Volume + MA serves to display the transacted volume (purchases and sales executed) of a certain financial asset at a given point of time together with the moving average of that same volume over time. What is it for? With the Volume + MA

Jonathan Pereira
已发布文章多层感知机与反向传播算法
多层感知机与反向传播算法

这两种方法的普及性日益增加,因此在 Matlab、R、Python、C++ 等领域开发了大量的库,它们接收到一个训练集作为输入,并自动为问题创建合适的网络。让我们试着理解基本的神经网络类型是如何工作的(包括单神经元感知机和多层感知机)。我们将探讨一个令人兴奋的算法,它负责网络训练 - 梯度下降和反向传播。现有的复杂模型往往基于这样简单的网络模型。

· 3 2992
Jonathan Pereira 已发布产品
评论: 10
FREE

Hi-Lo is an indicator whose purpose is to more precisely assist the trends of a given asset - thus indicating the possible best time to buy or sell. What is Hi-lo? Hi-Lo is a term derived from English, where Hi is linked to the word High and Lo to the word Low. It is a trend indicator used to assess asset trading in the financial market. Therefore, its use is given to identify whether a particular asset is showing an upward or downward trend in value. In this way, Hi-Lo Activator can be

Jonathan Pereira
已发布代码Classe para controlar horários de negociação
Essa classe foi projetada com o intuito de ajudar nos horários de negociação, de uma forma simples e centralizada.
2 718
Jonathan Pereira
Jonathan Pereira 2020.07.05
Davi, vc deve ter colocado o if fora da função OnTick, essas validações devem ficar dentro de OnTick ou OnTimer
Jose Gustavo De Almeida Verneque
Jose Gustavo De Almeida Verneque 2020.11.12
Boa noite... consegui implementar no meu codigo... funciona no real mas nao funciona no backtest.... Pode me ajudar, por favor...
Jonathan Pereira
Jonathan Pereira 2020.11.24
Opa...sim, o que ocorre exatamente? verifique os logs na aba experts e diario.
Jonathan Pereira
已发布代码Exemplo de um Robô usando medias moveis para um cruzamento de medias
Esse trabalho foi feito pensando em como se deve usar a Orientação a Objetos em nossos trabalhos.
2 2996
Aldirenio Barbosa Dos Santos Barbosa
Aldirenio Barbosa Dos Santos Barbosa 2020.12.11
oi jonato boa noite me tire um a duvida qual e arecita pra ficar igual a vc
Jonathan Pereira
已发布代码Epsilon-Greedy Algorithm
Semi-uniform strategies were the earliest (and simplest) strategies discovered to approximately solve the bandit problem. All those strategies have in common a greedy behavior where the best lever (based on previous observations) is always pulled except when a (uniformly) random action is taken.
1 232
Jonathan Pereira
已发布代码Greedy Algorithm
Program for Greedy Algorithm to find Minimum number of Coins.
1 160
Jonathan Pereira
已发布代码Gerenciador de TakeProfit e StopLoss
Adiciona o StopGain(TakeProfit) e StopLoss definidos pelo usuário é possível também adicionar o uso de um trailingStop
2 1070
12