文章 "蒙特卡罗方法在强化学习中的应用"

 

新文章 蒙特卡罗方法在强化学习中的应用已发布:

在本文中,我们将应用强化学习来开发可以自主学习的EA交易。在前一篇文章中,我们考虑了随机决策森林算法,并编写了一个简单的基于强化学习的自学习EA,概述了这种方法的主要优点(交易算法的开发简单和“培训”速度快)。强化学习(RL)可以很容易地融入到任何交易EA中,并加速其优化。

停止优化后,只需启用单一测试模式(因为最佳模型已写入文件,并且只上载该模型):


让我们滚动两个月前的历史记录,看看该模型在整个四个月内是如何工作的:


我们可以看到结果模型持续了另一个月(几乎整个9月),而在8月崩溃。

作者:Maxim Dmitrievsky