Nam Phueng / Perfil
I am fond of statistical analysis.
Este artigo é uma continuação do artigo "Padrões de reversão: Testando o padrão 'topo/fundo duplo'" publicado anteriormente. Agora consideraremos o padrão de reversão O-C-O, o bem conhecido Ombro-Cabeça-Ombro, compararemos o desemprenho de dois padrões e, por último, tentaremos combinar o trading de dois padrões num só sistema de negociação.
O artigo considera a possibilidade de aplicar a otimização Bayesiana para os hiperparâmetros das redes neurais profundas, obtidas por diversas variantes de treinamento. É realizado a comparação da qualidade de classificação de uma DNN com os hiperparâmetros ótimos em diferentes variantes de treinamento. O nível de eficácia dos hiperparâmetros ótimos da DNN foi verificado nos testes fora da amostra (forward tests). As direções possíveis para melhorar a qualidade da classificação foram determinadas.
A Floresta Aleatória (RF), com o uso de bagging, é um dos métodos mais poderosos de aprendizado de máquina, o que é ligeiramente inferior ao gradient boosting. Este artigo tenta desenvolver um sistema de negociação de autoaprendizagem que toma decisões com base na experiência adquirida com a interação com o mercado.
Neste artigo vamos testar as propriedades estatísticas do sistema de gestão de dinheiro Labouchere. Este sistema é considerado um dos tipos menos agressivos dos sistemas Martingale, uma vez que as apostas não são dobradas, mas são colocadas a uma certa quantidade de cada vez.