Aprendizado de máquina no trading: teoria, prática, negociação e não só - página 1922

 
Maxim Dmitrievsky:

Altai... mas eu não fui no último momento, não queria ir).

A propósito, sabe sobre os profissionais?

Eu posso compartilhar código para analisar os modelos Catbust, apenas para variáveis contínuas. O código lê o código C++, converte em matrizes MQL e executa. Não posso dizer que funcionará com todos os parâmetros possíveis, eu o fiz para um formato específico.
 
Aliaksandr Hryshyn:
Eu posso compartilhar código para analisar modelos Catbust, apenas para variáveis contínuas. Leia o código C++, converta para matrizes MQL e execute. Não posso dizer que com todos os parâmetros possíveis funcionará, eu estava fazendo isso para um formato específico.

Qual é a análise? Eu uso píton para tudo.

Ele cospe neste formato. Classificador Binário

#include <string>
#include <vector>

/* Model data */
static const struct CatboostModel {
    unsigned int FloatFeatureCount = 24;
    unsigned int BinaryFeatureCount = 149;
    unsigned int TreeCount = 38;
    unsigned int TreeDepth[38] = {4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4};
    unsigned int TreeSplits[152] = {111, 141, 18, 122, 100, 119, 14, 81, 123, 46, 70, 33, 137, 63, 95, 12, 136, 61, 56, 27, 135, 98, 78, 44, 138, 80, 147, 36, 142, 125, 65, 92, 94, 55, 77, 112, 113, 120, 58, 17, 133, 35, 16, 71, 130, 117, 76, 68, 103, 99, 54, 29, 110, 64, 41, 3, 116, 140, 106, 88, 127, 87, 118, 69, 128, 105, 8, 45, 148, 79, 121, 109, 102, 124, 62, 131, 146, 66, 5, 104, 86, 139, 93, 11, 20, 67, 4, 89, 59, 143, 51, 32, 30, 144, 42, 53, 2, 40, 19, 25, 90, 115, 50, 75, 7, 129, 82, 73, 79, 24, 49, 0, 114, 38, 97, 31, 37, 72, 126, 107, 47, 96, 43, 23, 22, 34, 26, 15, 86, 10, 28, 84, 39, 74, 9, 57, 145, 83, 132, 134, 52, 101, 108, 21, 126, 91, 1, 48, 13, 60, 85, 6};
    unsigned int BorderCounts[24] = {0, 2, 7, 5, 5, 2, 5, 6, 3, 4, 6, 2, 9, 8, 6, 9, 7, 5, 7, 6, 5, 8, 8, 24};
    float Borders[149] = {-0.000455000001 f, -0.000224999996 f, -0.00365500012 f, 0.000404999999 f, 0.000615000026 f, 0.000675000018 f, 0.00104500004 f, 0.00156 f, 0.00159500004 f, -0.00115499995 f, -0.000969999994 f, -0.000215000007 f, -1.49999996 e-05 f, 0.000854999991 f, -0.00139999995 f, -6.50000002 e-05 f, 0.000375000003 f, 0.000615000026 f, 0.000905000023 f, 0.000555000035 f, 0.000864999951 f, -0.000505000004 f, -0.000364999985 f, 0.000264999981 f, 0.000385000021 f, 0.001085 f, -0.00156500004 f, -0.000914999982 f, -0.000415000017 f, -7.50000036 e-05 f, 0.000705000013 f, 0.000864999951 f, -4.99999987 e-06 f, 0.000224999996 f, 0.000274999999 f, -0.00166499999 f, -0.00149499997 f, -0.000364999985 f, 0.0014500001 f, -0.00346500007 f, -0.00191999995 f, -0.00103499996 f, 0.000224999996 f, 0.00164999999 f, 0.00318 f, -0.00142500002 f, -0.00111499999 f, -0.00681000017 f, -0.00107500004 f, 0.000104999999 f, 0.000185000012 f, 0.000505000004 f, 0.000564999995 f, 0.00059499999 f, 0.00116500002 f, 0.00246499991 f, -0.00215499988 f, -0.0020349999 f, 0.000155000002 f, 0.00059499999 f, 0.000725000049 f, 0.00143499998 f, 0.00159500004 f, 0.00461499998 f, -0.00113500003 f, -5.49999968 e-05 f, 6.50000002 e-05 f, 7.50000036 e-05 f, 0.000735000009 f, 0.00431500003 f, -0.000439999974 f, -0.000224999996 f, -0.000155000002 f, -0.000135000009 f, 0.000325000001 f, 0.000534999999 f, 0.000714999973 f, 0.001605 f, 0.0020349999 f, -0.00679500028 f, -0.00156500004 f, -0.00130999996 f, -0.000815000036 f, -0.000484999997 f, 0.000274999999 f, 0.00126500009 f, -0.00630000001 f, -0.000965000014 f, -0.000914999982 f, 0.000944999978 f, 0.001085 f, -0.00104500004 f, -0.000570000033 f, -0.000135000009 f, 0.000415000017 f, 0.000774999964 f, 0.00129000004 f, 0.00136499992 f, -0.00214500003 f, -0.00078500004 f, 0.000564999995 f, 0.000969999994 f, 0.00129500008 f, 0.00171500002 f, -0.00109499996 f, -0.000665 f, -0.000505000004 f, -0.000455000001 f, 0.00092000002 f, -0.00078500004 f, -0.00033000001 f, 0.000375000003 f, 0.000754999986 f, 0.000944999978 f, 0.000974999974 f, 0.00135000004 f, 0.00179500005 f, -0.000735000009 f, -0.000195000001 f, -0.000140000004 f, -4.50000007 e-05 f, 2.49999994 e-05 f, 0.000549999997 f, 0.000729999971 f, 0.00175000005 f, -0.000645000022 f, -0.000404999999 f, -0.000390000001 f, -0.00033000001 f, -0.000315000012 f, -0.000204999989 f, -0.000195000001 f, 4.99999987 e-05 f, 6.50000002 e-05 f, 0.000109999994 f, 0.000230000005 f, 0.000245000003 f, 0.000354999996 f, 0.00046499999 f, 0.000484999997 f, 0.000495000044 f, 0.00059499999 f, 0.000684999977 f, 0.000705000013 f, 0.000725000049 f, 0.00109999999 f, 0.00122500001 f, 0.00124499993 f, 0.00194999995 f, };

    /* Aggregated array of leaf values for trees. Each tree is represented by a separate line: */
    double LeafValues[608] = {
        0.2730029119914884, 0.03364653273046463, -0.2371262400839919, 0.1081843550866285, 0.1343627920272425, -0.1126874256586927, -0.1126874256586927, -0.1126874256586927, -0.06059264820464742, 0.06930028482667829, 0, -0.249182516740322, 0, -0.04043442721784622, 0.1126874256586928, -0.246778769760217,
        0.3055616697384914, 0, 0, 0, 0.3295134099067072, 0, -0.001400906528597944, 0.1109887188810945, 0.3268369286843394, 0.09915101998784448, 0.1058842186334935, -0.2170923208654514, 0.2805477815282972, 0.1585452078030638, 0.04581636331023499, -0.1482988821054673,
        0.2661001303798985, 0, 0.2465781759237509, -0.1025474154359036, 0.1236081969018748, -0.1513185903680103, 0.09970504556623555, -0.1329324554655258, 0.1311330854183022, 0, 0.1102178581205619, -0.09318782033023576, 0, 0, 0.0984009666714989, -0.2078721521946149,
        0.2318376125278687, -0.1062335532728426, 0, 0, 0.08412564157842428, -0.1469343266107289, 0, -0.08357104102221358, 0.1653044215102119, -0.03314292702875558, 0, 0, 0.003358906412990077, -0.1912230767439488, 0, -0.2522267340231065,
        0.1973025375909275, 0, 0, 0, 0.4228820616711522, -0.07638314839084562, 0, 0, 0.2694211287720111, 0, 0, 0, 0.1652145942168661, -0.08206648374492893, -0.1450852254716266, -0.1363614260665522,
        0.2270555010525044, 0, 0.1627207525378816, -0.06377453863892701, 0, 0, -0.1357966649842286, -0.2427437659214983, 0, 0, 0, 0, 0, 0, 0, -0.1803912820573122,
        0.1804444671623995, -0.1017902080898772, 0.2133898509109472, 0.2517605145878034, 0, 0, 0, 0.0667661734515297, 0.2610915548565391, 0, 0.1052820435018607, -0.04560350655907942, 0, 0, 0, -0.3270645727235584,
        0.3575664582748267, 0, -0.0134804607394401, -0.04992725827315483, 0.2020647226798946, 0, -0.03385866654059267, 0, 0.2644495544004545, 0, 0.05182748809759461, -0.1768682974102572, 0.2407016500831285, 0, 0.04550057548317996, -0.119019763974849,
        0.08658245310355768, -0.02639731363946828, 0, 0, -0.07937732361985407, 0.2547371055272361, 0, 0, 0.02587599274452583, -0.05393875649408716, 0, 0, 0, -0.1657068825017175, 0, -0.2049254584747038,
        0.1440498437609123, 0.1101736004819604, 0.005464554800258488, -0.03812379875242829, 0.1819257725985174, 0, 0.02309394186822163, -0.08799582858720537, 0.08924300136100559, 0, -0.1587820248277704, 0, 0.07685524153284377, 0, 0.03664203213434057, -0.1531993322169632,
        0.09806057100343098, -0.09888524364037948, 0.2135150121698442, -0.09009400810853242, 0.07220208574561482, 0, 0.06638832682433267, -0.08176789304081045, 0.0580997781754348, 0.2757911650361233, 0.2520388352390843, -0.03558969703545899, 0, 0, 0.05616828900715019, -0.05996334853624528,
        0.3034312237500126, -0.3295604473826144, 0.1887070939415764, -0.01674053821735176, 0.04203126063490011, 0, 0.06936231294655706, -0.04128791044025015, 0, 0, 0.1230751670630003, -0.02722926856756647, 0.03326065080614352, 0, 0.06968005579997801, -0.05689069395020619,
        0.1144715475069234, 0, 0.01532939962304299, -0.09842006335636103, 0, 0, 0.3532831730583329, -0.1424529047285753, 0.1130693244873004, 0, -0.001413815681729, -0.1730902495689088, 0, 0, -0.003744815582707896, -0.2340067817777089,
        0.0582716295838749, 0.05887691806098397, 0.1830039055150205, 0.1275695040047543, 0.2265370556123239, 0.05865002066522316, 0.1412030624760486, -0.04465374880604451, 0.1016168407643287, -0.1696982846816441, 0.0168802138361802, -0.09464076746916356, 0.118358865381315, 0.07766416051208853, -0.004086300252646373, 0.01145464025038506,
        0.09893204118662431, 0, 0, 0, -0.1771744077440305, 0, -0.08956662944160931, 0, 0.06459969382272165, 0, -0.09920331948638744, 0, 0.06208790080353844, -0.06391545778445595, -0.03815083591344838, -0.193220691727352,
        0.2084212418556134, -0.2711170554066691, 0.3287662064308552, 0.04618819791309881, 0.02295062367871115, 0.06903818051790414, 0.06785880462261525, -0.01900550327916934, 0, 0, 0, 0, 0, 0, 0, -0.1379757023193675,
        0.1277198477469503, -0.1045845285066445, 0.06646719763990752, -0.006328728989568992, 0, 0, 0, 0, 0.2991650315125301, -0.1609657699217688, 0.1807990380964121, -0.02247201152624968, 0.06039630602452812, 0, 0.07323877669092338, 0.1041619957787472,
        -0.1701607137827854, 0, 0.08119342965694411, 0, 0, 0, 0, 0, 0, 0, 0.02263621203523299, 0, 0, 0, 0.001461819609651068, -0.3310861822552173,
        0.1708582471998724, 0, 0, 0, 0, -0.08085455495800464, 0, 0, -0.02242709602120458, -0.01626809043535743, -0.08378843901194441, -0.1314392215326333, 0.1670789581203374, -0.03477863896354667, -0.02057073074698931, -0.132977812589716,
        0.01576995464742881, 0, 0.05788166290521737, 0, 0.1155558453551253, 0, 0, 0, 0.009175549226526487, -0.09285703148627725, 0.0170554478209398, -0.1704207949809702, -0.1872038714907393, 0, 0.1259508080010625, -0.1193817874448983,
        -0.1624959866223847, 0.03397677382231543, 0, -0.01337295631517065, 0, 0.1165918182388884, 0, -0.04635935471889165, 0, 0.012563032729967, 0, -0.1185940873147897, 0, 0.02522877097419614, 0, -0.02570582073728468,
        0.002633980002093404, 0.0725570801392979, 0.03442625637449047, 0.001037481484499863, -0.04931529849937184, -0.2105671840353762, 0.1489911821071239, 0.2202194677045035, 0.1810528663002426, 0, -0.08188791865647969, -0.124584203103273, 0, 0.03156045615123341, 0.05563213612263092, -0.04578705044003427,
        0.01165640797726642, -0.1810863968750629, -0.1089920493861719, 0.05654669419619869, 0.05301303138076533, 0.1259240607012236, -0.1400660470693698, 0.06632028296608294, 0.02792682995145789, -0.1631488652519533, -0.1472788242094764, 0.02141183442530574, 0.284237301261878, -0.001197458738763785, 0.05972702215452129, -0.0586075718789894,
        0.02490937469062505, 0.01810224834922746, -0.1092925911367815, -0.1197570696964759, 0.008067995573721135, -0.1023547665228953, -0.09294834637942173, 0.231300348695698, 0.2206397515352709, 0, -0.03762173512827768, 0, 0.102636146583814, -0.04563726647379882, -0.0298583349638738, -0.03244852061992397,
        -0.1794615195377556, 0.01921769229013687, 0, 0.01044638539736725, 0, 0.02781136690266, 0, 0.001867775508010755, 0, 0.1067785434424472, 0, -0.2932442639776253, 0, 0, 0, -0.03241018659571911,
        -0.006510415667175931, 0.07059931629954573, -0.05002576775584883, 0, 0.02889911804947202, 0.1366522086842556, 0.1459606096328157, -0.07315994927835844, -0.1602705507235337, 0.1878187897030766, -0.04626610184165392, -0.09837710067806367, 0.05397003977271773, -0.04858868406475466, 0.0649201842045576, -0.06524393947925287,
        0.1459267556026626, 0.01372089516811126, -0.1001303921089584, 0, 0.2092093674681419, 0.01930448166419142, -0.04972139914274094, 0, 0.03545870984455322, 0, -0.07554900451460518, 0, 0.2137989937258072, 0.0008411572827327659, -0.00117214692641536, 0.09422976943966678,
        -0.1641700048226127, 0.07641634809302257, 0.01054185317373139, 0.1341178828759175, 0, -0.04019050552180111, 0, 0.1596324334341981, 0, 0.006806725110812047, 0, -0.1081606151666887, 0, 0.01822843651581126, 0, -0.01720619226968497,
        0.009025394520361704, -0.00389494343189025, 0.2311406287627894, -0.083367208305538, 0.1730715229027212, -0.1114791940489316, 0, -0.1028046654549743, -0.07334162028427468, 0.04581415665697729, 0.09898474179992452, 0.1365328178250054, -0.04325183693301483, -0.002210798573244916, -0.1387629807152628, -0.08980091117790198,
        0.1201356461649662, 0.1758279743860605, 0.04350349009977216, 0.1134402521456353, -0.06435518652676646, -0.2395731049930946, 0.08878547365332778, -0.03259992777530323, 0.04016967881155449, 0.05586731905591313, 0.02231616278420573, 0.06715298880059364, -0.02931637068858008, -0.02727342673220743, 0.07981966823218006, -0.00736687454594985,
        -0.1523999096887992, 0.01066390065885025, 0, -0.007937651487390564, 0, 0.05838570541522675, 0, -0.01764599778668323, 0.00926922900423862, -0.01462296480325223, 0, -0.1231100245909153, 0, 0.2071885095206176, 0, -0.07553876970469377,
        -0.007509531863847287, -0.03821554347886918, 0, 0, 0.04539951031452136, -0.03237816844587264, 0.1489237277306394, -0.06858743023508017, 0, 0, 0, 0, -0.02197724937765806, -0.009927643925657297, 0.1075288047240592, 0.007583049665065472,
        -0.1438530341047301, 0.08211619188336085, 0.009520674504357616, -0.035052444268162, 0, -0.2209655809626173, 0, 0.02928893608785839, 0, 0.2307562221331639, 0, 0.004914926553117083, 0, -0.04531825623377965, 0, -0.01478427605905595,
        -0.07585048830556372, 0.06213280806503956, 0, 0, -0.2460691271464409, 0.1587981422466466, 0, 0, 0, -0.01873021929806146, 0, 0.1355384701582952, -0.06505176113152071, 0.006237844209643408, 0, -0.01139845636090814,
        0.03344525515709466, 0, 0.05456132700219524, 0, -0.3220774353233821, 0, 0.09756717225728033, 0, 0, 0, 0, 0, -0.05013487401906989, -0.1004156738161951, 0.01006705311047576, -0.06297947180380781,
        0.03125880796992506, 0.1620757216856216, 0.02218793960373364, 0, -0.05510500531128774, 0, -0.1305668615108228, 0.09175301826776584, -0.02241534935432258, 0.06091737602659867, 0.1959961615001555, -0.08945488952436154, -0.1297656911182584, -0.0327910998454452, 0.04823531757180094, -0.0451880914096086,
        -0.03549878434185903, -0.05751707772342768, 0.03023724321196803, -0.03668922584353116, 0.1446378062221211, -0.1558238670878492, 0.0440168187902071, -0.07335968350547692, 0.05992982442842611, 0, 0.1297678384005503, 0.001564747370113251, 0.1215230794033289, -0.237198658134785, 0.1200964187472702, -0.003075362232407817,
        0.009596007555535021, -0.02731003882847802, -0.03313751244478664, 0.2002494267502239, -0.00142054347110939, 0, -0.07476518666658544, 0.06964401248797676, -0.1775794863889658, -0.02635446781295587, -0.04719524974954924, 0.1681250432344917, 0, 0, 0.08871226782186471, -0.01856541295695367
    };
    double Scale = 1;
    double Bias = 0;
} CatboostModelStatic;

/* Model applicator */
double ApplyCatboostModel(
    const std::vector<float>& features
) {
    const struct CatboostModel& model = CatboostModelStatic;

    /* Binarise features */
    std::vector<unsigned char> binaryFeatures(model.BinaryFeatureCount);
    unsigned int binFeatureIndex = 0;
    for (unsigned int i = 0; i < model.FloatFeatureCount; ++i) {
        for(unsigned int j = 0; j < model.BorderCounts[i]; ++j) {
            binaryFeatures[binFeatureIndex] = (unsigned char)(features[i] > model.Borders[binFeatureIndex]);
            ++binFeatureIndex;
        }
    }

    /* Extract and sum values from trees */
    double result = 0.0;
    const unsigned int* treeSplitsPtr = model.TreeSplits;
    const double* leafValuesForCurrentTreePtr = model.LeafValues;
    for (unsigned int treeId = 0; treeId < model.TreeCount; ++treeId) {
        const unsigned int currentTreeDepth = model.TreeDepth[treeId];
        unsigned int index = 0;
        for (unsigned int depth = 0; depth < currentTreeDepth; ++depth) {
            index |= (binaryFeatures[treeSplitsPtr[depth]] << depth);
        }
        result += leafValuesForCurrentTreePtr[index];
        treeSplitsPtr += currentTreeDepth;
        leafValuesForCurrentTreePtr += (1 << currentTreeDepth);
    }
    return model.Scale * result + model.Bias;
}

double ApplyCatboostModel(
    const std::vector<float>& floatFeatures,
    const std::vector<std::string>&
) {
    return ApplyCatboostModel(floatFeatures);
}
 
MQL
Obtém mql arrays
 
Aliaksandr Hryshyn:
MQL

Compartilhe se você não se importar

Talvez conseguir algo útil com isso.

 
Maxim Dmitrievsky:

partilhar, se não se importa.

Talvez conseguir algo útil com isso.

Só mais tarde, quando eu chegar a casa.
 
Aleksey Vyazmikin:

Percebi que este tipo de agregação não cria regras,

Eu não conheço o algoritmo de agrupamento que cria as regras.

Então a questão permanece - como salvar em csv pertencentes a cada classe?

write.csv(myfile, file = "C:\\Users\\......\\myfile.csv", sep = ";",row.names = F,col.names = T)

Embora seja estranho, por que não podemos continuar nos agrupando com dados já existentes e definir nova string em uma das classes, ou podemos?

Claro que podes, mas não em µl!!!

Aleksey Vyazmikin:
Mas encontrei um livro em R.

Lê-o, grande livro.

Aleksey Vyazmikin:

E não entendo, como posso enrolar os resultados em uma coluna específica?

Eu não entendo o que você quer))

Aleksey Vyazmikin:

Esta imagem tem os mesmos preditores de antes, mas o tamanho da amostra é diferente e, mais importante ainda, foram adicionados novos preditores.

E é assim que se interpreta - a propensão para o excesso de treino?

Eu já disse, interprete de acordo com o propósito direto da ferramenta, e você está com o objetivo de dirigir pregos com uma flor.

https://ru.wikipedia.org/wiki/%D0%A1%D0%BD%D0%B8%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5_%D1%80%D0%B0%D0%B7%D0%BC%D0%B5%D1%80%D0%BD%D0%BE%D1%81%D1%82%D0%B8#:~:text=%D0%B5%D0%B4%D0%B8%D0%BD%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%20%D0%B2%D0%BE%D0%B7%D0%BC%D0%BE%D0%B6%D0%BD%D1%8B%D0%BC%20%D0%B2%D0%B0%D1%80%D0%B8%D0%B0%D0%BD%D1%82%D0%BE%D0%BC.-,%D0%9F%D1%80%D0%B5%D0%B8%D0%BC%D1%83%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%B0%20%D1%81%D0%BD%D0%B8%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F%20%D1%80%D0%B0%D0%B7%D0%BC%D0%B5%D1%80%D0%BD%D0%BE%D1%81%D1%82%D0%B8,%D1%82%D0%B0%D0%BA%D0%B8%D0%BC%20%D0%BA%D0%B0%D0%BA%202D%20%D0%B8%D0%BB%D0%B8%203D.


Seleção de recursos[editar|editar código]

Artigo principal:Selecção de características

Um método deselecção de características tenta encontrar um subconjunto das variáveis originais (chamadas características ou atributos). Existem três estratégias - uma estratégia de filtro(por exemplo,acumulação de características [pt]), uma estratégia deembrulho(por exemplo, pesquisa de acordo com a precisão) e uma estratégia deincorporação(seleccionar características a adicionar ou remover à medida que o modelo é construído, com base em erros de previsão). Veja também problemas deotimização combinatória.

Em alguns casos,a análise de dados, comoregressão ouclassificação, pode ser feita no espaço reduzido com mais precisão do que no espaço original [3].

Projecção de funcionalidades[editar|editar código]

A projeção de recursos converte dados deespaço dimensional alto para espaço dimensional baixo. A transformação dos dados pode ser linear, como nométodo dos componentes principais(PCM), mas há uma série de técnicas dedownsizing não-lineares [pt] [4] [5]. Para dados multidimensionais,uma representaçãotensorial pode ser usada para reduzir a dimensionalidade através dotreinamento polilinear de subespaços [pt] [6].


Foi o que fizemos ontem.

Dimensionality reduction[editar|editar código]

Para conjuntos de dados de alta dimensão (isto é, com mais de 10 dimensões), o downsizing é normalmente feito antes de aplicar oalgoritmo k-nearest neighbours(k-NN) para evitar o efeito damaldição da dimensionalidade [16].


Vantagens da redução da dimensionalidade[editar|editar código]

  1. Reduz o tempo e a memória necessários.
  2. A remoção da multicolinearidade melhora a velocidade do modelo de aprendizagem da máquina.
  3. É mais fácil representar visualmente os dados reduzindo-os a dimensões muito baixas, como 2D ou 3D.


 

Decidiu olhar para as inversões significativas do mercado. U-turno significativo como alvo. Pensei que fosse o caos, mas não...

inversãoverde

inversão de marchavermelha

Cinzento nãoé uma inversão.

É um pouco mais visual em 2D.


Adicionei mais dados; de qualquer forma tenho 4 clusters para comprar e 4 para vender. Agora provavelmente devo escolher os clusters necessários e tentar separar uma volta da outra pelo qualificador em cada um deles


Imagine quanto lixo há nos dados, tudo isso tem que ser separado da informação necessária.


Não se pode fazer isso com o agrupamento.


Você precisa tentar algo mais sério, DBscan por exemplo, ou talvez selecionar manualmente, eu ouvi falar de tal tecnologia em algum lugar

 
mytarmailS:

Decidiu olhar para as inversões significativas do mercado. U-turno significativo como alvo. Pensei que fosse o caos, mas não...

inversãoverde

inversão de marchavermelha

Cinzento nãoé uma inversão.

É um pouco mais visual em 2D.


Adicionei mais dados; de qualquer forma tenho 4 clusters para comprar e 4 para vender. Agora provavelmente devo escolher os clusters necessários e tentar separar uma volta da outra pelo qualificador em cada um deles


Imagine quanto lixo há nos dados, tudo isso tem que ser separado da informação necessária.


Não se pode fazer isso com o agrupamento.


Nós precisamos tentar algo mais sério, DBscan por exemplo, ou talvez selecionar manualmente, eu ouvi falar de tal tecnologia em algum lugar.

Existe alguma forma de procurar atributos dentro de um determinado agrupamento?

 
Rorschach:

Existe alguma forma de olhar para as características dentro de um aglomerado em particular?

Os clusters não têm características, eles combinam partes de características por semelhança, por assim dizer.

 
mytarmailS:

Os clusters não têm características, eles combinam partes de características por similaridade, por assim dizer.

O que é de interesse são os valores das características do cluster.