Maxim Dmitrievsky / Perfil
- Informações
10+ anos
experiência
|
0
produtos
|
0
versão demo
|
0
trabalhos
|
0
sinais
|
0
assinantes
|

В данной статье предложен оригинальный подход к разработке трендовых стратегий. Вы узнаете, как можно делать разметку обучающих примеров и обучать на них классификаторы. На выходе получатся готовые торговые системы, работающие под управлением терминала MetaTrader 5.

В данной статье предлагается очередной оригинальный подход к созданию торговых систем на основе машинного обучения, с использованием кластеризации и разметки сделок для стратегий возврата к среднему.

В статье реализован быстрый тестер стратегий для моделей машинного обучения с применением Numba. По скорости он превосходит тестер стратегий на чистом Python в 50 раз. Автор рекомендует использовать эту библиотеку для ускорения математических расчетов и особенно там, где используются циклы.

https://www.mql5.com/ru/channels/machinelearning

Os algoritmos de agrupamento em aprendizado de máquina são ferramentas importantes de aprendizado não supervisionado que permitem dividir os dados brutos em grupos com características semelhantes. Com esses grupos, é possível, por exemplo, realizar análise de mercado para um cluster específico, identificar os clusters mais resilientes em novos conjuntos de dados e também realizar inferências causais. Este artigo apresenta um método original para o agrupamento de séries temporais, utilizando a linguagem Python.

O artigo examina o tema de pareamento na inferência causal. O pareamento é utilizado para comparar observações semelhantes em um conjunto de dados. Isso é necessário para determinar corretamente os efeitos causais e eliminar o viés. O autor explica como isso ajuda na construção de sistemas de negociação baseados em aprendizado de máquina, que se tornam mais estáveis em novos dados nos quais não foram treinados. O escore de propensão desempenha um papel central e é amplamente utilizado na inferência causal.

Neste artigo, examinaremos a teoria da inferência causal usando aprendizado de máquina, bem como a implementação de uma abordagem personalizada em Python. A inferência causal e o pensamento causal têm suas raízes na filosofia e psicologia e desempenham um papel importante na nossa compreensão da realidade.

Este artigo propõe um método autoral para a criação de robôs usando aprendizado de máquina.

Este artigo apresentará ao leitor a técnica de aprendizado de máquina para negociação baseada em grade e martingale. Para minha surpresa, essa abordagem, por algum motivo, não é afetada de forma alguma na rede global. Após ler o artigo, podemos criar nossos próprios bots.

O artigo considera a criação de modelos de aprendizado de máquina com filtros de tempo e discute a eficácia dessa abordagem. O fator humano pode ser eliminado agora simplesmente instruindo o modelo a negociar em uma determinada hora de um determinado dia da semana. A busca de padrões pode ser fornecida por um algoritmo separado.

Neste artigo, nós consideraremos os métodos de aprendizado de máquina ativo que se baseiam em dados reais e discutiremos seus prós e contras. Talvez você considere esses métodos úteis e os inclua em seu arsenal de modelos de aprendizado de máquina. A transdução foi introduzida por Vladimir Vapnik, que é o coinventor da Support-Vector Machine (SVM).