Voir comment télécharger gratuitement des robots de trading
Retrouvez-nous sur Twitter !
Rejoignez notre page de fans
Rejoignez notre page de fans
Vous avez aimé le script ? Essayez-le dans le terminal MetaTrader 5
Composite - structural design pattern - bibliothèque pour MetaTrader 5
- Vues:
- 2773
- Note:
- Publié:
- 2020.09.02 09:25
- Besoin d'un robot ou d'un indicateur basé sur ce code ? Commandez-le sur Freelance Aller sur Freelance
//+------------------------------------------------------------------+ //| Composite.mqh | //| 2019-2020, dimitri pecheritsa | //| 792112@gmail.com | //+------------------------------------------------------------------+ //| src > patterns > structural > composite | //+------------------------------------------------------------------+ // design patterns: elements of reusable object-oriented software // gof > erich gamma, richard helm, ralph johnson, john vlissides // published in 1994 //+------------------------------------------------------------------+ //| intent | //+------------------------------------------------------------------+ // object tree > represents > part-whole hierarchies // client > treats uniformly > objects and compositions of objects //+------------------------------------------------------------------+ //| benefits | //+------------------------------------------------------------------+ // variable aspect > structure and composition of an object // refactoring > problem > extending functionality < by subclassing // refactoring > solution > composition/delegation > combine behavior // also > bridge, chain of responsibility, composite, decorator, // observer, strategy //+------------------------------------------------------------------+ //| applicability | //+------------------------------------------------------------------+ // represent > part-whole hierarchies of objects // clients > ignore > difference // compositions of objects and individual objects // clients > treat uniformly > composite structure objects //+------------------------------------------------------------------+ //| structure | //+------------------------------------------------------------------+ // // |Client|----->| Component |*<------------------+ // |-----------------| | // |Operation() | | // |Add(Component) | | // |Remove(Component)| | // |GetChild(int) | | // ^ | // | | // +-------+-----------+ | // | | nodes | // | Leaf | | Composite |o------+ // |-----------| |-------------------| // |Operation()| |Operation() | // | for all n in nodes| // | n.Operation() | // |Add(Component) | // |Remove(Component) | // |GetChild(int) | // //+------------------------------------------------------------------+ //| typical object structure | //+------------------------------------------------------------------+ // // +---->|aLeaf| // | // |aComposite|-----+---->|aLeaf| +---->|aLeaf| // | | // +---->|aComposite|----+---->|aLeaf| // | | // +---->|aLeaf| +---->|aLeaf| // #include <SRC\Patterns\PatternOrganizer.mqh> namespace Composite { //+------------------------------------------------------------------+ //| participants | //+------------------------------------------------------------------+ class Component // declares > interface // objects < composition // accessing and managing child components // default behavior > interface > common to all classes // optional > interface // accessing > component's parent in the recursive structure // implements it if that's appropriate { public: virtual void Operation(void)=0; virtual void Add(Component*)=0; virtual void Remove(Component*)=0; virtual Component* GetChild(int)=0; Component(void); Component(string); protected: string name; }; Component::Component(void) {} Component::Component(string a_name):name(a_name) {} //+------------------------------------------------------------------+ //| participants | //+------------------------------------------------------------------+ #define ERR_INVALID_OPERATION_EXCEPTION 1 //user error for adding/removing a component to a leaf class Leaf:public Component // represents > leaf objects < composition // no children // defines > behavior > primitive objects in the composition { public: void Operation(void); void Add(Component*); void Remove(Component*); Component* GetChild(int); Leaf(string); }; void Leaf::Leaf(string a_name):Component(a_name) {} void Leaf::Operation(void) {Print(name);} void Leaf::Add(Component*) {SetUserError(ERR_INVALID_OPERATION_EXCEPTION);} void Leaf::Remove(Component*) {SetUserError(ERR_INVALID_OPERATION_EXCEPTION);} Component* Leaf::GetChild(int) {SetUserError(ERR_INVALID_OPERATION_EXCEPTION); return NULL;} //+------------------------------------------------------------------+ //| participants | //+------------------------------------------------------------------+ class Composite:public Component // defines > behavior for components having children // stores > child components // implements > child-related operations > in component interface { public: void Operation(void); void Add(Component*); void Remove(Component*); Component* GetChild(int); Composite(string); ~Composite(void); protected: Component* nodes[]; }; Composite::Composite(string a_name):Component(a_name) {} //+------------------------------------------------------------------+ //| participants > composite | //+------------------------------------------------------------------+ Composite::~Composite(void) { int total=ArraySize(nodes); for(int i=0; i<total; i++) { Component* i_node=nodes[i]; if(CheckPointer(i_node)==1) { delete i_node; } } } //+------------------------------------------------------------------+ //| participants > composite | //+------------------------------------------------------------------+ void Composite::Operation(void) { Print(name); int total=ArraySize(nodes); for(int i=0; i<total; i++) { nodes[i].Operation(); } } //+------------------------------------------------------------------+ //| participants > composite | //+------------------------------------------------------------------+ void Composite::Add(Component *src) { int size=ArraySize(nodes); ArrayResize(nodes,size+1); nodes[size]=src; } //+------------------------------------------------------------------+ //| participants > composite | //+------------------------------------------------------------------+ void Composite::Remove(Component *src) { int find=-1; int total=ArraySize(nodes); for(int i=0; i<total; i++) { if(nodes[i]==src) { find=i; break; } } if(find>-1) { ArrayRemove(nodes,find,1); } } //+------------------------------------------------------------------+ //| participants > composite | //+------------------------------------------------------------------+ Component* Composite::GetChild(int i) { return nodes[i]; } //+------------------------------------------------------------------+ //| participants | //+------------------------------------------------------------------+ class Client:public ClientExample // manipulates objects in the composition through the component interface { public: string Output(void); void Run(void); }; string Client::Output(void) {return __FUNCTION__;} //+------------------------------------------------------------------+ //| collaborations | //+------------------------------------------------------------------+ void Client::Run(void) // clients use the component class interface // to interact with objects in the composite structure // if the recipient is a leaf > the request is handled directly // if the recipient is a composite // it usually forwards requests to its child components // possibly performing additional operations // before and/or after forwarding { Component* root=new Composite("root"); //make root //---make components Component* branch1=new Composite(" branch 1"); Component* branch2=new Composite(" branch 2"); Component* leaf1=new Leaf(" leaf 1"); Component* leaf2=new Leaf(" leaf 2"); //---build tree root.Add(branch1); root.Add(branch2); branch1.Add(leaf1); branch1.Add(leaf2); branch2.Add(leaf2); branch2.Add(new Leaf(" leaf 3")); //---check printf("tree:"); root.Operation(); //---change tree root.Remove(branch1); //remove whole branch //---check printf("tree after removal of one branch:"); root.Operation(); //---finish delete root; delete branch1; } } //+------------------------------------------------------------------+ //| output | //+------------------------------------------------------------------+ // Structural::Composite::Client::Output // tree: // root // branch 1 // leaf 1 // leaf 2 // branch 2 // leaf 2 // leaf 3 // tree after removal of one branch: // root // branch 2 // leaf 2 // leaf 3 //+------------------------------------------------------------------+ //| consequences | //+------------------------------------------------------------------+ // defines class hierarchies consisting of primitive objects and composite objects // makes the client simple // makes it easier to add new kinds of components // can make your design overly general //+------------------------------------------------------------------+ //| implementation | //+------------------------------------------------------------------+ // explicit parent references (in component) // simplify the traversal and management of a composite structure // help support the chain of responsibility pattern // sharing components // flyweight can rework a design to avoid storing parents altogether // maximizing the component interface // default implementations, leaf and composite will override them // declaring the child management operations // at the root of the class hierarchy > transparency // in the composite > afety // usually it's better to make add and remove fail by default // if the component isn't allowed to have children // or if the argument of remove isn't a child of the component // component may implement a list of components // if there are relatively few children in the structure // child ordering > design child access/management carefully > iterator // caching to improve performance // when components know their parents // tell composites that their caches are invalid // composite is responsible for deleting its children // when it's destroyed, unless leafs can be shared // composites store children in // linked lists, trees, arrays, and hash tables //+------------------------------------------------------------------+ //| related patterns | //+------------------------------------------------------------------+ // chain of responsibility > component-parent link // decorator > common parent class > for decorators and composites // flyweight > share components (no longer refer to their parents) // iterator > traverse composites // visitor > localizes operations and behavior // distributed across composite and leaf classes //+------------------------------------------------------------------+
Strategy - Set And Forget (with anti-Martingale system)
This strategy is the well known set & forget accompanied by the anti-martingale system. It is very useful if you are very busy in which you don't have time, you want to trade the London session while you are sleeping in USA, etc.
Peter Panel 1.0Trading panel that allows user to define levels of trade by simply dragging lines.