Tradingview indicator Machine Learning Adaptive SuperTrend [AlgoAlpha] convert into mq4

MQL4 Indikatoren Konvertierung

Spezifikation

I want tradingview indicator Machine Learning Adaptive SuperTrend [AlgoAlpha] convert into mq4

Tradingview indicator code as under


// This Pine Script™ code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © AlgoAlpha

//@version=5
indicator("Machine Learning Adaptive SuperTrend [AlgoAlpha]", "AlgoAlpha - 🤖 Adaptive SuperTrend", overlay = true, max_labels_count = 500)
import TradingView/ta/7
atr_len = input.int(10, "ATR Length", group = "SuperTrend Settings")
fact = input.float(3, "SuperTrend Factor", group = "SuperTrend Settings")
training_data_period = input.int(100, "Training Data Length", group = "K-Means Settings")
highvol = input.float(0.75, "Initial High volatility Percentile Guess", maxval = 1, group = "K-Means Settings", tooltip = "The initial guess of where the potential 'high volatility' area is, a value of 0.75 will take the 75th percentile of the range of ATR values over the training data period")
midvol = input.float(0.5, "Initial Medium volatility Percentile Guess", maxval = 1, group = "K-Means Settings", tooltip = "The initial guess of where the potential 'medium volatility' area is, a value of 0.5 will take the 50th percentile of the range of ATR values over the training data period")
lowvol = input.float(0.25, "Initial Low volatility Percentile Guess", maxval = 1, group = "K-Means Settings", tooltip = "The initial guess of where the potential 'low volatility' area is, a value of 0.25 will take the 25th percentile of the range of ATR values over the training data period")
t1 = input.int(70, "Transparency 1", maxval = 100, minval = 0, group = "Appearance")
t2 = input.int(95, "Transparency 2", maxval = 100, minval = 0, group = "Appearance")
green = input.color(#00ffbb, "Bullish Color", group = "Appearance")
red = input.color(#ff1100, "Bearish Color", group = "Appearance")

pine_supertrend(factor, atr) =>
    src = hl2
    upperBand = src + factor * atr
    lowerBand = src - factor * atr
    prevLowerBand = nz(lowerBand[1])
    prevUpperBand = nz(upperBand[1])

    lowerBand := lowerBand > prevLowerBand or close[1] < prevLowerBand ? lowerBand : prevLowerBand
    upperBand := upperBand < prevUpperBand or close[1] > prevUpperBand ? upperBand : prevUpperBand
    int _direction = na
    float superTrend = na
    prevSuperTrend = superTrend[1]
    if na(atr[1])
        _direction := 1
    else if prevSuperTrend == prevUpperBand
        _direction := close > upperBand ? -1 : 1
    else
        _direction := close < lowerBand ? 1 : -1
    superTrend := _direction == -1 ? lowerBand : upperBand
    [superTrend, _direction]

volatility = ta.atr(atr_len)

upper = ta.highest(volatility, training_data_period)
lower = ta.lowest(volatility, training_data_period)

high_volatility = lower + (upper-lower) * highvol
medium_volatility = lower + (upper-lower) * midvol
low_volatility = lower + (upper-lower) * lowvol

iterations = 0

size_a = 0
size_b = 0
size_c = 0

hv = array.new_float()
mv = array.new_float()
lv = array.new_float()
amean = array.new_float(1,high_volatility)
bmean = array.new_float(1,medium_volatility)
cmean = array.new_float(1,low_volatility)

if nz(volatility) > 0 and bar_index >= training_data_period-1

    while ((amean.size() == 1 ? true : (amean.first() != amean.get(1))) or (bmean.size() == 1 ? true : (bmean.first() != bmean.get(1))) or (cmean.size() == 1 ? true : (cmean.first() != cmean.get(1))))
        hv.clear()
        mv.clear()
        lv.clear()
        for i = training_data_period-1 to 0
            _1 = math.abs(volatility[i] - amean.first())
            _2 = math.abs(volatility[i] - bmean.first())
            _3 = math.abs(volatility[i] - cmean.first())
            if _1 < _2 and _1 < _3
                hv.unshift(volatility[i])

            if _2 < _1 and _2 < _3
                mv.unshift(volatility[i])

            if _3 < _1 and _3 < _2
                lv.unshift(volatility[i])
       
        amean.unshift(hv.avg())
        bmean.unshift(mv.avg())
        cmean.unshift(lv.avg())
        size_a := hv.size()
        size_b := mv.size()
        size_c := lv.size()
        iterations := iterations + 1

hv_new = amean.first()
mv_new = bmean.first()
lv_new = cmean.first()
vdist_a = math.abs(volatility - hv_new)
vdist_b = math.abs(volatility - mv_new)
vdist_c = math.abs(volatility - lv_new)

distances = array.new_float()
centroids = array.new_float()

distances.push(vdist_a)
distances.push(vdist_b)
distances.push(vdist_c)

centroids.push(hv_new)
centroids.push(mv_new)
centroids.push(lv_new)

cluster = distances.indexof(distances.min()) // 0 for high, 1 for medium, 2 for low
assigned_centroid = cluster == -1 ? na : centroids.get(cluster)

[ST, dir] = pine_supertrend(fact, assigned_centroid)
upTrend = plot(close > ST ? ST : na, color = color.new(green, t1), style = plot.style_linebr) //, force_overlay = true
downTrend = plot(close < ST ? ST : na, color = color.new(red, t1), style = plot.style_linebr, force_overlay = false) //, force_overlay = true
bodyMiddle = plot(barstate.isfirst ? na : (open + close) / 2, "Body Middle",display = display.none)

fill(bodyMiddle, upTrend, (open + close) / 2, ST, color.new(green, t2), color.new(green, t1))
fill(bodyMiddle, downTrend, ST, (open + close) / 2, color.new(red, t1), color.new(red, t2))

plotshape(ta.crossunder(dir, 0) ? ST : na, "Bullish Trend", shape.labelup, location.absolute, green, text = "▲", textcolor = chart.fg_color, size = size.small)
plotshape(ta.crossover(dir, 0) ? ST : na, "Bearish Trend", shape.labeldown, location.absolute, red, text = "▼", textcolor = chart.fg_color, size = size.small)

label.new(bar_index, dir > 0 ? ST + ta.atr(7) : ST - ta.atr(7), text = str.tostring(4 - (cluster + 1)), style = label.style_none, textcolor = color.from_gradient(cluster + 1, 1, 3, color.new(dir > 0 ? red : green, 30), color.new(dir > 0 ? red : green, 90)))

if barstate.islast
    var data_table = table.new(position=position.top_right, columns=4, rows=4, bgcolor = chart.bg_color, border_width=1, border_color = chart.fg_color, frame_color = chart.fg_color, frame_width = 1)
    table.cell(data_table, text_halign=text.align_center, column=0, row=0, text="Cluster Number (Volatility Level)", text_color = chart.fg_color)
    table.cell(data_table, text_halign=text.align_center, column=1, row=0, text="Cluster Centroid (ATR)", text_color = chart.fg_color)
    table.cell(data_table, text_halign=text.align_center, column=2, row=0, text="Cluster Size (No. of Data Points in Each Cluster)", text_color = chart.fg_color)
    table.cell(data_table, text_halign=text.align_center, column=3, row=0, text="Current Volatility", text_color = chart.fg_color)

    table.cell(data_table, text_halign=text.align_center, column=0, row=1, text="3 (High)", text_color = chart.fg_color)
    table.cell(data_table, text_halign=text.align_center, column=0, row=2, text= "2 (Medium)", text_color = chart.fg_color)
    table.cell(data_table, text_halign=text.align_center, column=0, row=3, text= "1 (Low)", text_color = chart.fg_color)

    table.cell(data_table, text_halign=text.align_center, column=1, row=1, text=str.format("{0,number,#.##}", hv_new), text_color = chart.fg_color)
    table.cell(data_table, text_halign=text.align_center, column=1, row=2, text=str.format("{0,number,#.##}", mv_new), text_color = chart.fg_color)
    table.cell(data_table, text_halign=text.align_center, column=1, row=3, text=str.format("{0,number,#.##}", lv_new), text_color = chart.fg_color)

    table.cell(data_table, text_halign=text.align_center, column=2, row=1, text=str.format("{0,number,#.##}", size_c), text_color = chart.fg_color)
    table.cell(data_table, text_halign=text.align_center, column=2, row=2, text=str.format("{0,number,#.##}", size_b), text_color = chart.fg_color)
    table.cell(data_table, text_halign=text.align_center, column=2, row=3, text=str.format("{0,number,#.##}", size_a), text_color = chart.fg_color)

    table.cell(data_table, text_halign=text.align_center, column=3, row=1, text="HIGH " + "(ATR: " + str.format("{0,number,#.##}", volatility) + ")", text_color = chart.bg_color)
    table.cell(data_table, text_halign=text.align_center, column=3, row=2, text="MEDIUM " + "(ATR: " + str.format("{0,number,#.##}", volatility) + ")", text_color = chart.bg_color)
    table.cell(data_table, text_halign=text.align_center, column=3, row=3, text="LOW " + "(ATR: " + str.format("{0,number,#.##}", volatility) + ")", text_color = chart.bg_color)

    if cluster == 0
        data_table.cell_set_bgcolor(3, 1, chart.fg_color)
    else
        data_table.cell_set_bgcolor(3, 1, chart.bg_color)

    if cluster == 1
        data_table.cell_set_bgcolor(3, 2, chart.fg_color)
    else
        data_table.cell_set_bgcolor(3, 2, chart.bg_color)

    if cluster == 2
        data_table.cell_set_bgcolor(3, 3, chart.fg_color)
    else
        data_table.cell_set_bgcolor(3, 3, chart.bg_color)

////////////////////////////Alerts
alertcondition(ta.crossunder(dir, 0) and barstate.isconfirmed, "Bullish Trend Shift")
alertcondition(ta.crossover(dir, 0) and barstate.isconfirmed, "Bearish Trend Shift")
alertcondition(cluster == 0 and cluster[1] != 0 and barstate.isconfirmed, "High Volatility")
alertcondition(cluster == 1 and cluster[1] != 1 and barstate.isconfirmed, "Medium Volatility")
alertcondition(cluster == 2 and cluster[1] != 2 and barstate.isconfirmed, "Low Volatility")
alertcondition(cluster == 2 and cluster[1] != 2 and barstate.isconfirmed, "Low Volatility")


Bewerbungen

1
Entwickler 1
Bewertung
(6)
Projekte
5
20%
Schlichtung
2
0% / 0%
Frist nicht eingehalten
0
Überlastet
2
Entwickler 2
Bewertung
(93)
Projekte
122
41%
Schlichtung
0
Frist nicht eingehalten
3
2%
Arbeitet
3
Entwickler 3
Bewertung
(1)
Projekte
3
0%
Schlichtung
3
33% / 0%
Frist nicht eingehalten
0
Arbeitet
4
Entwickler 4
Bewertung
(302)
Projekte
454
65%
Schlichtung
5
40% / 0%
Frist nicht eingehalten
4
1%
Arbeitet
Ähnliche Aufträge
CBn> 50 - 1000 USD
I want to find a Developer to perform this work and settle payments in this Application. I undertake not to communicate with Applicants anywhere else except this Application, including third-party messengers, personal correspondence or emails. I understand that violators will be banned from publishing Orders in the Freelance service
Need 6 selection boxes to find a pattern to enter a trade. Each selection will be either buy or sell candle. A) Needs 2 type of trade option. Buy if pattern is met sell if pattern is met Open trade after 1,2,3,4,5,6 pattern options met B) Candle pattern options: 1 buy/sell 2 buy/sell /not used 3 buy/sell /not used 4 buy/sell/not used 5 buy/sell /not used 6 buy/sell /not used C). If pattern is met, the type of
a developer managed to add and fix everything within a few hours but he is disappeared for a week now editing/ adding features need to edit, fix mtf/ array out of range issue and add a few more features to existing High - low trend 3.04 (mtf + alerts + candles + bt).mq4 indicator
Hello mate I need to set up an automated process for extracting order book (DOM) data from a trading platform for key assets like USD/JPY, Oil, Gold, GBP/USD, NASDAQ, and EU/USD. This data should ideally come from platforms such as CQG, Sierra Charts, or Denali, but I am open to any other reliable platform that provides excellent DOM (Depth of Market) data. The extracted DOM data (buy and sell volumes) should be fed
any programmer who have a positive grid hedge marti EA logic similar to brilliant ea grid can apply i have an idea of making better logic it should work same with the same logic but with new indicators
HAVING INDICATOR SOURCE CODE AND ADDITION OF THREE INDICATOR MORE FOR BETTER RESULT. THE PROGRAM RUN EA MODE AS WELL AS INDICATOR MODE. REST ALL THE CONDITION AND SETTTING AS PER FILE. AFTER DEMOSTRATION IF ANY CHANGE REQUIRE IS APPLICABLE. DETAIL BACKTEST REQURIED OF ALL EXCEUTABLE ORDER
Hello Great developer . I have another project in mind though (I have the source code). This expert, when attached to a chart with an open trade with no TP and/or SL set, will create hidden SL/TP (broker does not know) of xx/yy pips from the entry price and when the said TP/SL is hit the trade should be closed. I want you to modify it such that the expert will continously scan all 28 pairs and check those trades with
I need an indicator that will scan the forex pairs that I indicate for comparison in the parameters section, scan multiple timeframes and display result with alerts on the dashboard. If you are able to do this, please reach out to me if you understand the SMT divergence concept. Thanks
I need help Converting VuManChu Cipher b Indiator on Tradingview to MT5 I need this in 3 or 4 days maximum. If you can do that please reach out to me Thanks
Pro Mt4 coder needed 30 - 100 USD
I am looking for a professional coder who is well skilled in programming algorithm trading system for MT4, what I am actually looking for is to develop an MT4 indicator based on the logic of existing indicator that I will share in comment section so that applicant will just install and test and ensure that they got the exact logic and that he/she can code exactly only reach out if you have the right skilled

Projektdetails

Budget
50 - 80 USD
Für die Entwickler
45 - 72 USD