Cond

Berechnen der Konditionszahl einer Matrix.

double matrix::Cond(
  const ENUM_MATRIX_NORM  norm      // Matrixnorm
   );

Parameter

Norm

[in]  Art der Norm aus ENUM_MATRIX_NORM

Rückgabewert

Die Konditionszahl der Matrix Kann unendlich sein.

Hinweis

Die Konditionszahl von x ist definiert als die Norm von x mal der Norm der Inversen von x [1]. Die Norm kann die übliche L2-Norm (Wurzel aus der Summe der Quadrate) oder eine von mehreren anderen Matrixnormen sein.

Die Konditionszahl ist der K-Wert, der dem Produkt aus der Norm der Matrix A und ihrer Inversen entspricht. Matrizen mit einer hohen Konditionszahl werden als schlecht konditioniert bezeichnet. Matrizen mit einer niedrigen Konditionszahl werden als gut konditioniert bezeichnet. Die inverse Matrix wird durch Pseudo-Inversion erhalten, um nicht durch die Kondition der Quadratur und Nicht-Singularität der Matrix eingeschränkt zu sein.

Eine Ausnahme bildet die spektrale Konditionszahl.

 

Ein einfacher Algorithmus zur Berechnung der spektralen Konditionszahl in MQL5:

double MatrixCondSpectral(matrixa)
  {
   double norm=0.0;
   vector v=a.Spectrum();
 
   if(v.Size()>0)
     {
      double max_norm=v[0];
      double min_norm=v[0];
      for(ulong i=1i<v.Size(); i++)
        {
         double real=MathAbs(v[i]);
         if(max_norm<real)
            max_norm=real;
         if(min_norm>real)
            min_norm=real;
        }
      max_norm=MathSqrt(max_norm);
      min_norm=MathSqrt(min_norm);
      if(min_norm>0.0)
         norm=max_norm/min_norm;
     }
 
   return(norm);
  }

 

MQL5 Beispiel:

  matrix a= {{10, -1}, {010}, { 101}};
  Print("a.Cond(MATRIX_NORM_P2)="a.Cond(MATRIX_NORM_P2));
  Print("a.Cond(MATRIX_NORM_FROBENIUS)="a.Cond(MATRIX_NORM_FROBENIUS));
  Print("a.Cond(MATRIX_NORM_INF)="a.Cond(MATRIX_NORM_INF));
  Print("a.Cond(MATRIX_NORM_MINUS_INF)="a.Cond(MATRIX_NORM_MINUS_INF));
  Print("a.Cond(MATRIX_NORM_P1)=)"a.Cond(MATRIX_NORM_P1));
  Print("a.Cond(MATRIX_NORM_MINUS_P1)="a.Cond(MATRIX_NORM_MINUS_P1));
  Print("a.Cond(MATRIX_NORM_P2)="a.Cond(MATRIX_NORM_P2));
  Print("a.Cond(MATRIX_NORM_MINUS_P2)="a.Cond(MATRIX_NORM_MINUS_P2));
 
  /*
  matrix a
  [[1,0,-1]
  [0,1,0]
  [1,0,1]]
  a.Cond(MATRIX_NORM_P2)=1.414213562373095
  a.Cond(MATRIX_NORM_FROBENIUS)=3.162277660168379
  a.Cond(MATRIX_NORM_INF)=2.0
  a.Cond(MATRIX_NORM_MINUS_INF)=0.9999999999999997
  a.Cond(MATRIX_NORM_P1)=)2.0
  a.Cond(MATRIX_NORM_MINUS_P1)=0.9999999999999998
  a.Cond(MATRIX_NORM_P2)=1.414213562373095
  a.Cond(MATRIX_NORM_MINUS_P2)=0.7071067811865472
  */

 

Python Beispiel:

import numpy as np
from numpy import linalg as LA
a = np.array([[10, -1], [010], [101]])
print("a \n",a)
print("LA.cond(a)=",LA.cond(a))
print("LA.cond(a, 'fro')=",LA.cond(a, 'fro'))
print("LA.cond(a, np.inf)=",LA.cond(anp.inf))
print("LA.cond(a, -np.inf)=",LA.cond(a, -np.inf))
print("LA.cond(a, 1)=",LA.cond(a1))
print("LA.cond(a, -1)=",LA.cond(a, -1))
print("LA.cond(a, 2)=",LA.cond(a2))
print("LA.cond(a, -2)=",LA.cond(a, -2))
 
a 
 [[ 1  0 -1]
 [ 0  1  0]
 [ 1  0  1]]
LA.cond(a)= 1.4142135623730951
LA.cond(a, 'fro')= 3.1622776601683795
LA.cond(anp.inf)= 2.0
LA.cond(a, -np.inf)= 1.0
LA.cond(a1)= 2.0
LA.cond(a, -1)= 1.0
LA.cond(a2)= 1.4142135623730951
LA.cond(a, -2)= 0.7071067811865475