Yuqiang Pan
Yuqiang Pan
  • 信息
1 年
经验
0
产品
0
演示版
0
工作
0
信号
0
订阅者
Yuqiang Pan
已发布文章Integrate Your Own LLM into EA (Part 5): Develop and Test Trading Strategy with LLMs(II)-LoRA-Tuning
Integrate Your Own LLM into EA (Part 5): Develop and Test Trading Strategy with LLMs(II)-LoRA-Tuning

With the rapid development of artificial intelligence today, language models (LLMs) are an important part of artificial intelligence, so we should think about how to integrate powerful LLMs into our algorithmic trading. For most people, it is difficult to fine-tune these powerful models according to their needs, deploy them locally, and then apply them to algorithmic trading. This series of articles will take a step-by-step approach to achieve this goal.

Yuqiang Pan
已发布文章Integrate Your Own LLM into EA (Part 5): Develop and Test Trading Strategy with LLMs(I)-Fine-tuning
Integrate Your Own LLM into EA (Part 5): Develop and Test Trading Strategy with LLMs(I)-Fine-tuning

With the rapid development of artificial intelligence today, language models (LLMs) are an important part of artificial intelligence, so we should think about how to integrate powerful LLMs into our algorithmic trading. For most people, it is difficult to fine-tune these powerful models according to their needs, deploy them locally, and then apply them to algorithmic trading. This series of articles will take a step-by-step approach to achieve this goal.

Yuqiang Pan
已发布文章Integrate Your Own LLM into EA (Part 4): Training Your Own LLM with GPU
Integrate Your Own LLM into EA (Part 4): Training Your Own LLM with GPU

With the rapid development of artificial intelligence today, language models (LLMs) are an important part of artificial intelligence, so we should think about how to integrate powerful LLMs into our algorithmic trading. For most people, it is difficult to fine-tune these powerful models according to their needs, deploy them locally, and then apply them to algorithmic trading. This series of articles will take a step-by-step approach to achieve this goal.

Yuqiang Pan
已发布文章Integrate Your Own LLM into EA (Part 3): Training Your Own LLM with CPU
Integrate Your Own LLM into EA (Part 3): Training Your Own LLM with CPU

With the rapid development of artificial intelligence today, language models (LLMs) are an important part of artificial intelligence, so we should think about how to integrate powerful LLMs into our algorithmic trading. For most people, it is difficult to fine-tune these powerful models according to their needs, deploy them locally, and then apply them to algorithmic trading. This series of articles will take a step-by-step approach to achieve this goal.

1
Yuqiang Pan
已发布文章用于时间序列挖掘的数据标签(第 6 部分):使用 ONNX 在 EA 中应用和测试
用于时间序列挖掘的数据标签(第 6 部分):使用 ONNX 在 EA 中应用和测试

本系列文章介绍了几种时间序列标注方法,可以创建符合大多数人工智能模型的数据,根据需要进行有针对性的数据标注可以使训练好的人工智能模型更符合预期的设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!

Yuqiang Pan
已发布文章用于时间序列挖掘的数据标签(第 5 部分):使用 Socket 在 EA 中进行应用和测试
用于时间序列挖掘的数据标签(第 5 部分):使用 Socket 在 EA 中进行应用和测试

本系列文章介绍了几种时间序列标注方法,可以创建符合大多数人工智能模型的数据,根据需求有针对性地进行数据标注,可以使训练出来的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!

Yuqiang Pan
已发布文章时间序列挖掘的数据标签(第4部分):使用标签数据的可解释性分解
时间序列挖掘的数据标签(第4部分):使用标签数据的可解释性分解

本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!

Yuqiang Pan
已发布文章将您自己的LLM集成到EA中(第2部分):环境部署示例
将您自己的LLM集成到EA中(第2部分):环境部署示例

随着人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该思考如何将强大的语言模型集成到我们的算法交易中。对大多数人来说,很难根据他们的需求对这些强大的模型进行微调,在本地部署,然后将其应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。

Yuqiang Pan
已发布文章将您自己的LLM集成到EA中(第1部分):硬件和环境部署
将您自己的LLM集成到EA中(第1部分):硬件和环境部署

随着人工智能的快速发展,大型语言模型(LLM)成为人工智能的重要组成部分,因此我们应该思考如何将强大的语言模型集成到我们的算法交易中。对大多数人来说,很难根据他们的需求对这些强大的模型进行微调,在本地部署,然后将其应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。

Yuqiang Pan
已发布文章时间序列挖掘的数据标签(第3部分):使用标签数据的示例
时间序列挖掘的数据标签(第3部分):使用标签数据的示例

本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!

Yuqiang Pan
已发布文章时间序列挖掘的数据标签(第2部分):使用Python制作带有趋势标记的数据集
时间序列挖掘的数据标签(第2部分):使用Python制作带有趋势标记的数据集

本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!

Yuqiang Pan
已发布文章时间序列挖掘的数据标签(第1部分):通过EA操作图制作具有趋势标记的数据集
时间序列挖掘的数据标签(第1部分):通过EA操作图制作具有趋势标记的数据集

本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!

Yuqiang Pan
已在MQL5.community注册