Dijital düşük geçişli filtreler kullanarak bir ticaret sistemi oluşturma - sayfa 12

 
grasn писал (а): https://forum.mql4.com/ru/9321/page9
:hakkında)

grasn , sayfa 10'da age (kendimden alıntı yaparak):

Oldukça hassas bir durum ortaya çıkıyor: Sürecin durağan olup olmadığını bulmak için önce gerçekçi modelini bilmek gerekir (burada AR(1)). Ama dönüşler öyle değil. Bu, testin geçerli olmadığı anlamına gelir.
Kahretsin, ne dağınıklık. Kendi içinde durağanlığın tanımı ... bir şekilde böyle değil, katı değil. "Sürecin durağan olması için m.o., vb.'nin sabit olması gerekir." Onlar. süreç m.o. kendisi sabit olmalı :))) Tereyağlı yağ ...
 
Kahretsin, ne dağınıklık. Kendi içinde, durağanlığın tanımı ... bir şekilde öyle değil, katı değil. "Sürecin durağan olması için m.o., vb.'nin sabit olması gerekir." Onlar. süreç m.o. kendisi sabit olmalı :))) Tereyağlı yağ ...

Onu nereden aldın? eğer m.o. kalıcı olarak, o zaman hiçbir işlem yoktur m.o. ve durağanlığı ile ilgili bir soru yoktur ve sonuç olarak tereyağı yağı yoktur.

Halt tarafından verilen tanım oldukça katıdır. Sevilmeyecek ne var?
 

Peki, bu nasıl bir süreç değil, bstone ? Evet ve sabitlik - elbette belirli bir istatistiksel anlamda ve tüm okumaların katı eşitliğinde değil. İşte Prival'in tanımı:

MOF (m.p.) ve kovaryans fonksiyonu zaman kaymasına göre değişmezse, yani sonlu varyansa sahip rastgele bir süreç (SP), geniş anlamda durağan olarak adlandırılır. POI sabittir (zamana bağlı değildir) ve kovaryans işlevi yalnızca t 2 - t 1 argümanları arasındaki farka bağlıdır.

Bildiğim tek durağanlık testi Dickey-Fuller testidir. Ancak bir tür süreç modeli olduğunu varsayar (bu durumda, 1. dereceden otomatik regresyon). Ama ya model bizim için önceden bilinmiyorsa?


En basitinden başlayalım: "Sürekli MAY (zamana bağlı değil)". Pratik olarak ne kadar kontrol edeceksiniz? Sürecin hareketli ortalamasını hesaplayın (bu MOT'tur)? Hangi dönemle?

 
Her şey tanımdadır: m.o. zaman kayması altında değişmez olmalıdır. Aslında bu, eğer bir dizi ölçüm m.d. belirli bir süre verilen incelenen sürecin (periyodun aynı olması gerekmez, ancak elde edilen msn tahmininin istatistiksel güvenilirliği için yeterince büyük olmalıdır). Her ölçüm, serinin ayrı bir bölümünü kapsar (zamanı kaydırırız), ne kadar çok bölüm olursa, güvenilirlik o kadar yüksek olur.

Sonuç olarak, bir dizi ölçüm elde ederiz (bir süreç değil), bu ölçüm dizisi için bir m.d tahmini elde ederiz. ilgili istatistiklerle. Bu kadar.
 

bstone , her şey açık - ve aynı zamanda bana yeni bir şey söylemedin. IOM'nin mevcut tahminini elde etmek için ortalama süre ne olmalıdır? Diyelim ki 14k sayım var. Dönem - 10, 50, 100 veya 200?

MOF'un zamanla değişmezliği hipotezinin reddedilmediğini düşünmek için MOF'nin varyansı ne olmalıdır?

 
Mathemat :

bstone , her şey açık - ve aynı zamanda bana yeni bir şey söylemedin. IOM'nin mevcut tahminini elde etmek için ortalama süre ne olmalıdır? Diyelim ki 14k sayım var. Dönem - 10, 50, 100 veya 200?

MOF'un zamanla değişmezliği hipotezinin reddedilmediğini düşünmek için MOF'nin varyansı ne olmalıdır?

Yeni bir şey bildirmediysem, o zaman güven aralığı kavramını hatırlamanın zamanı geldi. Bu durumda, sürenin boyutu yalnızca sonucun doğruluğuna ilişkin iddialarınıza bağlıdır. Onlar. m.o'yu tahmin etmek için kendinize uygun bir güven aralığı sorabilirsiniz. Tek bir bölüm için gerekli boyutu bulmak için. Ardından, m.o.'nun nihai değerlendirmesi için gerekli sayıda sitenin hesaplanmasıyla aynı şeyi yaparsınız.

Güven aralığını hesaplamak için farklı yöntemler vardır. İlk olarak, ölçüm sonuçlarının bilinen dağılımlara göre sıralandığını belirlemek ve kanıtlamak gerekli olabilir (örneğin, Student dağılımını kullanarak güven aralıklarını hesaplama yöntemi genellikle yalnızca normal olarak dağıtılan popülasyonlardan örnekler için çalışır).

Zaten ölçümlerin dağılımı yasasını belirlemeye çalışma aşamasında, m.d. burada durağanlık kokusunun olmadığını keşfetmek mümkün olacaktır.

Not : Ben aslında bir menajerim, bu yüzden nispeten yüzeysel bir istatistik bilgim var, ancak bildiklerime dayanarak sağduyunun dikte ettiği şey bu.
 

Matematik için

Norm ile uyum için getiri dağılımı ( EURUSD 240) hakkında araştırma yapıldı. (NZR) Pearson'ın Ki-Kare testine göre, bu bir NZR değildir. Ayrıntılı açıklamaları (matkad) içeren bir dosya ekliyorum, MOR ve RMS'yi de tahmin etti ve tahminlerin güven aralıklarını hesapladı

Şimdilik, yürütülen çalışmalardan bir sonucun faydalı olduğunu düşünüyorum, bunlar 4 H'de bu döviz çifti üzerinde çalışırken 81 puan (3*RMS) olan SL setinin değeriyle ilgili önerilerdir. Dileyen herkes favori para birimini indirebilir ve keşfedebilir. Programa ve hesaplamalara göre net olmayan bir şey varsa, lütfen Skype ile iletişime geçin, yardımcı olmaya çalışacağım.


ZY Bu serinin dar anlamda durağan olduğunu ispatlamak mümkün olmamıştır. Geniş anlamda durağanlığın kanıtı hakkında daha fazla araştırma yapmaya çalışacağım (MOF ve RMS (kovaryans) = const).



Kuzey Rüzgarına

Verdiğiniz grafikler matematikçinin araştırmak istediği sayı serileri değildir. 5-10 dakika sonra, sanırım mumun döngüsel yapısını doğrulayan çalışmalar yayınlayacağım.

Dosyalar:
11.zip  273 kb
 

o kuzey rüzgarı

EURUSD60 aldım ve benzer yapıları sadece H - L sayıları için yaptım

İşte ACF, bunun bir delta fonksiyonu olmadığı görsel olarak açık ve süreçte bazı kararlı salınımlar + üstel bozulma

ACF spektrumu

Spektrumda 12 ve 4 saatlik iki farklı dalgalanma vardır.

Dosyayı ekliyorum.

Dosyalar:
22.zip  1292 kb
 
Mathemat :
Özel : yakl. Peki, yarın Neiman Pearson kriterine göre kontrol etmeye çalışacağım. Ama hala trend olmadan nasıl modelleyeceğimi anlamıyorum? Alexey, modelleme tekniği bir şekilde anlaşılmaz.
Bu tekniği burada kısaca anlattım: https://forum.mql4.com/en/9358/page6#51829 . Ayrıca neden ihtiyacım olduğunu da söylüyor.

Ve eğilim, getiri serisini entegre ederken hala ortaya çıkıyor (açık bir şekilde geri yüklendi).

Bana öyle geliyor ki hala yanılıyorsunuz, dönüşler gürültü ve durağan. Durağan olmayan eğilim. Bu nedenle, matematiksel olarak katı bir şekilde modelleme getirileri olsa bile, trendin kesin bir şekilde iyileşmesi olmayacaktır.
 
Mathemat :

bstone , her şey açık - ve aynı zamanda bana yeni bir şey söylemedin. IOM'nin mevcut tahminini elde etmek için ortalama süre ne olmalıdır? Diyelim ki 14k sayım var. Dönem - 10, 50, 100 veya 200?

MOF'un zamanla değişmezliği hipotezinin reddedilmediğini düşünmek için MOF'nin varyansı ne olmalıdır?


11.zip dosyasına bakın, MOJ tahmininin güven aralığının nasıl hesaplanacağı burada