Um estudo sobre a aplicabilidade do martingale utilizando simulações do jogo de moedas - página 4

 
Nikolay Demko:

Um mal-entendido de Anti-Martin. Anti-Martin é o quê?

É uma grande redução após um comércio perdido, ou

É a posição oposta à posição comercial sob Martin?

temos duas variáveis binárias, ou seja, 4 opções, e apenas uma delas é Martin, presumivelmente as outras 3 são Anti-Martin.


Isso é que você tem três anti-Martin.
Mas eu tenho uma: oposta a Martin e direção oposta do negócio e MM (redução do lote após a perda do comércio).


Alexander Puzanov:

Se sua anti-martinha vem com anti-spread, anti-comissão e slippage positivo

E a luta com essas trivialidades é um tópico para outro ramo... Aqui o camarada testa a questão puramente em uma moeda

 

Nosso cálculo anterior pode ser verificado simplesmente executando uma simulação de 3.153.600 jogos, vamos verificar qual será o lucro:

profit: 157632.60234890878
{ 0 = 788417 , 1 = 393279 , 2 = 196918 , 3 = 99323 , 4 = 49040 , 5 = 24706 , 6 = 12390 , 7 = 6091 , 8 = 3088 , 9 = 1511 , 10 = 796 , 11 = 375 , 12 = 183 , 13 = 100 , 14 = 50 , 15 = 30 , 16 = 17 , 17 = 7 , 18 = 3 , 19 = 1 , 25 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 , 21 = 209715.203125 , 22 = 419430.40625 , 23 = 838860.8125 , 24 = 1677721.625 , 25 = 3355443.25 }
profit: 157674.9023495391
{ 0 = 788781 , 1 = 393239 , 2 = 197561 , 3 = 98682 , 4 = 49031 , 5 = 24882 , 6 = 12329 , 7 = 6136 , 8 = 3051 , 9 = 1483 , 10 = 803 , 11 = 408 , 12 = 199 , 13 = 73 , 14 = 58 , 15 = 16 , 16 = 6 , 17 = 5 , 18 = 5 , 22 = 1 , 27 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 , 21 = 209715.203125 , 22 = 419430.40625 , 23 = 838860.8125 , 24 = 1677721.625 , 25 = 3355443.25 , 26 = 6710886.5 , 27 = 1.3421773 E7}
profit: 157621.90234874934
{ 0 = 788127 , 1 = 393663 , 2 = 197306 , 3 = 98323 , 4 = 49360 , 5 = 24656 , 6 = 12424 , 7 = 6226 , 8 = 3048 , 9 = 1559 , 10 = 777 , 11 = 375 , 12 = 169 , 13 = 105 , 14 = 51 , 15 = 20 , 16 = 17 , 17 = 6 , 18 = 4 , 19 = 2 , 20 = 1 , 21 = 1 , 22 = 2 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 , 21 = 209715.203125 , 22 = 419430.40625 }
profit: 157641.30234903842
{ 0 = 788369 , 1 = 393927 , 2 = 196455 , 3 = 98892 , 4 = 49693 , 5 = 24609 , 6 = 12133 , 7 = 6076 , 8 = 3085 , 9 = 1547 , 10 = 818 , 11 = 385 , 12 = 218 , 13 = 98 , 14 = 51 , 15 = 35 , 16 = 9 , 17 = 3 , 18 = 6 , 19 = 3 , 20 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 }
profit: 157530.60234738886
{ 0 = 786859 , 1 = 393728 , 2 = 197400 , 3 = 98421 , 4 = 49673 , 5 = 24537 , 6 = 12262 , 7 = 6167 , 8 = 3133 , 9 = 1542 , 10 = 799 , 11 = 392 , 12 = 173 , 13 = 110 , 14 = 65 , 15 = 24 , 16 = 18 , 17 = 2 , 19 = 1 , 22 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 , 21 = 209715.203125 , 22 = 419430.40625 }
profit: 157765.30235088617
{ 0 = 788939 , 1 = 395345 , 2 = 196607 , 3 = 98383 , 4 = 49182 , 5 = 24447 , 6 = 12368 , 7 = 6181 , 8 = 3157 , 9 = 1495 , 10 = 767 , 11 = 398 , 12 = 165 , 13 = 116 , 14 = 57 , 15 = 17 , 16 = 14 , 17 = 4 , 18 = 7 , 19 = 1 , 20 = 1 , 21 = 1 , 23 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 , 21 = 209715.203125 , 22 = 419430.40625 , 23 = 838860.8125 }
profit: 157589.70234826952
{ 0 = 787785 , 1 = 393602 , 2 = 197476 , 3 = 98136 , 4 = 49575 , 5 = 24489 , 6 = 12460 , 7 = 6132 , 8 = 3063 , 9 = 1597 , 10 = 791 , 11 = 403 , 12 = 187 , 13 = 98 , 14 = 51 , 15 = 24 , 16 = 14 , 17 = 6 , 18 = 3 , 19 = 4 , 20 = 1 , 22 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 , 21 = 209715.203125 , 22 = 419430.40625 }
profit: 157714.10235012323
{ 0 = 789208 , 1 = 393822 , 2 = 196983 , 3 = 98452 , 4 = 49316 , 5 = 24690 , 6 = 12358 , 7 = 6146 , 8 = 3136 , 9 = 1515 , 10 = 768 , 11 = 371 , 12 = 184 , 13 = 88 , 14 = 43 , 15 = 37 , 16 = 9 , 17 = 5 , 18 = 5 , 19 = 5 , 22 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 , 21 = 209715.203125 , 22 = 419430.40625 }
profit: 157639.90234901756
{ 0 = 788547 , 1 = 394045 , 2 = 196710 , 3 = 98051 , 4 = 49597 , 5 = 24544 , 6 = 12389 , 7 = 6263 , 8 = 3176 , 9 = 1520 , 10 = 768 , 11 = 378 , 12 = 196 , 13 = 109 , 14 = 58 , 15 = 20 , 16 = 18 , 17 = 5 , 18 = 1 , 19 = 1 , 20 = 3 , 21 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 , 21 = 209715.203125 }
profit: 157710.70235007256
{ 0 = 788631 , 1 = 395061 , 2 = 196330 , 3 = 98508 , 4 = 49351 , 5 = 24474 , 6 = 12363 , 7 = 6155 , 8 = 3102 , 9 = 1522 , 10 = 812 , 11 = 414 , 12 = 195 , 13 = 91 , 14 = 44 , 15 = 28 , 16 = 11 , 17 = 8 , 18 = 5 , 19 = 2 , 22 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 , 21 = 209715.203125 , 22 = 419430.40625 }

Nossos cálculos se mostraram corretos, vemos o mesmo lucro. Mas espere, na vida real, nada acontece de graça, e há uma comissão, agora vamos adicionar não muito, nem um pouco de 1%, e ver o que resta:

profit: 88822.49086572754
{ 0 = 789162 , 1 = 394784 , 2 = 196963 , 3 = 98538 , 4 = 49499 , 5 = 24317 , 6 = 12326 , 7 = 6065 , 8 = 3140 , 9 = 1531 , 10 = 783 , 11 = 380 , 12 = 175 , 13 = 87 , 14 = 40 , 15 = 22 , 16 = 11 , 17 = 4 , 18 = 6 , 19 = 1 , 21 = 1 , 24 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 , 21 = 209715.203125 , 22 = 419430.40625 , 23 = 838860.8125 , 24 = 1677721.625 }
profit: 123625.2866022763
{ 0 = 786908 , 1 = 394133 , 2 = 197405 , 3 = 98932 , 4 = 49458 , 5 = 24430 , 6 = 12308 , 7 = 6175 , 8 = 3105 , 9 = 1510 , 10 = 786 , 11 = 371 , 12 = 159 , 13 = 95 , 14 = 51 , 15 = 21 , 16 = 10 , 17 = 6 , 18 = 2 , 19 = 5 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 }
profit: 121507.11862347
{ 0 = 790402 , 1 = 393787 , 2 = 196971 , 3 = 99023 , 4 = 49062 , 5 = 24533 , 6 = 12165 , 7 = 6157 , 8 = 3095 , 9 = 1537 , 10 = 783 , 11 = 367 , 12 = 196 , 13 = 100 , 14 = 52 , 15 = 21 , 16 = 13 , 17 = 4 , 18 = 2 , 19 = 1 , 20 = 1 , 21 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 , 21 = 209715.203125 }
profit: 122120.13661360118
{ 0 = 787529 , 1 = 393583 , 2 = 197336 , 3 = 98729 , 4 = 49332 , 5 = 24912 , 6 = 12176 , 7 = 6190 , 8 = 3086 , 9 = 1516 , 10 = 754 , 11 = 398 , 12 = 205 , 13 = 79 , 14 = 36 , 15 = 15 , 16 = 13 , 17 = 7 , 18 = 7 , 19 = 2 , 20 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 }
profit: 122313.38861370487
{ 0 = 788149 , 1 = 394042 , 2 = 197090 , 3 = 98480 , 4 = 49415 , 5 = 24699 , 6 = 12456 , 7 = 6148 , 8 = 3084 , 9 = 1494 , 10 = 757 , 11 = 362 , 12 = 204 , 13 = 87 , 14 = 41 , 15 = 21 , 16 = 10 , 17 = 4 , 18 = 2 , 19 = 1 , 20 = 1 , 21 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 , 21 = 209715.203125 }
profit: 114498.12267213926
{ 0 = 788244 , 1 = 394497 , 2 = 197078 , 3 = 98618 , 4 = 48759 , 5 = 24987 , 6 = 12212 , 7 = 6249 , 8 = 2959 , 9 = 1588 , 10 = 780 , 11 = 407 , 12 = 197 , 13 = 103 , 14 = 38 , 15 = 23 , 16 = 14 , 17 = 6 , 18 = 4 , 19 = 2 , 20 = 3 , 21 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 , 21 = 209715.203125 }
profit: 120198.54263129225
{ 0 = 788848 , 1 = 394688 , 2 = 196769 , 3 = 98486 , 4 = 49361 , 5 = 24837 , 6 = 12348 , 7 = 6030 , 8 = 3042 , 9 = 1507 , 10 = 728 , 11 = 427 , 12 = 167 , 13 = 102 , 14 = 35 , 15 = 28 , 16 = 10 , 17 = 9 , 18 = 5 , 20 = 1 , 21 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 , 21 = 209715.203125 }
profit: 124012.17660451238
{ 0 = 790067 , 1 = 393780 , 2 = 197418 , 3 = 98537 , 4 = 49094 , 5 = 24588 , 6 = 12353 , 7 = 6162 , 8 = 3066 , 9 = 1526 , 10 = 735 , 11 = 373 , 12 = 191 , 13 = 99 , 14 = 43 , 15 = 29 , 16 = 13 , 17 = 4 , 18 = 3 , 19 = 2 , 20 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 }
profit: 122983.42060590046
{ 0 = 786979 , 1 = 394002 , 2 = 197291 , 3 = 97998 , 4 = 49489 , 5 = 24802 , 6 = 12214 , 7 = 6223 , 8 = 3200 , 9 = 1551 , 10 = 774 , 11 = 388 , 12 = 213 , 13 = 99 , 14 = 45 , 15 = 25 , 16 = 11 , 17 = 11 , 18 = 3 , 19 = 3 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 }
profit: - 4172302.0854641236
{ 0 = 789930 , 1 = 394339 , 2 = 197224 , 3 = 98052 , 4 = 48951 , 5 = 24853 , 6 = 12473 , 7 = 6051 , 8 = 3077 , 9 = 1546 , 10 = 771 , 11 = 394 , 12 = 167 , 13 = 102 , 14 = 41 , 15 = 24 , 16 = 8 , 17 = 11 , 18 = 8 , 19 = 2 , 31 = 1 }
{ 1 = 0.20000000298023224 , 2 = 0.4000000059604645 , 3 = 0.800000011920929 , 4 = 1.600000023841858 , 5 = 3.200000047683716 , 6 = 6.400000095367432 , 7 = 12.800000190734863 , 8 = 25.600000381469727 , 9 = 51.20000076293945 , 10 = 102.4000015258789 , 11 = 204.8000030517578 , 12 = 409.6000061035156 , 13 = 819.2000122070312 , 14 = 1638.4000244140625 , 15 = 3276.800048828125 , 16 = 6553.60009765625 , 17 = 13107.2001953125 , 18 = 26214.400390625 , 19 = 52428.80078125 , 20 = 104857.6015625 , 21 = 209715.203125 , 22 = 419430.40625 , 23 = 838860.8125 , 24 = 1677721.625 , 25 = 3355443.25 , 26 = 6710886.5 , 27 = 1.3421773 E7, 28 = 2.6843546 E7, 29 = 5.3687092 E7, 30 = 1.07374184 E8, 31 = 2.14748368 E8}

Vemos que o lucro caiu para 120.000, e o problema de sair da simulação é sentido - em alguns casos, durante um rebaixamento, a perda não é recuperada assim que o número testado de jogos termina. Será possível corrigir isso mais tarde.

No geral, até agora não vejo o benefício. E do ponto de vista prático, não haverá oportunidade (e até desejo, graças a Deus) de aumentar muito a conta, isso é restrições nas instituições ou apenas bom senso - com um depósito de mais de um milhão de dólares em um DC, acho que simplesmente fechará)))

Então, continuaremos testando um aumento de dois, mas com uma saída e resignação a uma perda após diferentes séries de perdas consecutivas (ou seja, aumentamos apenas x vezes - uma, duas, três etc. lote inicial). Isso exigirá uma pequena mudança no programa.

Mas primeiro, você ainda pode tentar fazer o mesmo de antes, mas com um bankroll menor projetado para menos falhas consecutivas, não 32 como é agora, mas digamos 20, 15, 10, 7, 5, 4, 3 E veja as probabilidades de ocorrência de colapso, lucro.

 

Nova versão do software, se alguém estiver interessado

public class CheckupCoinGame {
        private static final Random RANDOM = new Random();
        private static final int REPETITION = 10;
        private static final long ITERATIONS = 3_153_600;
        private Map<Integer, Integer> series;
        private Map<Integer, Double> bets;
        private double initialBet;
        private static final double MARTIN_KOEFF = 2.0;
        private double profit;
        private double currentBet;
        private static final double COMMISSION = 0.00;
        private static final double MAX_COMMISSION = 5.0;
        private int losingInRow;
        private int failCount;
        private static final int MAX_SERIES = 3;
        
        public CheckupCoinGame(double initialBet) {
                this.initialBet = initialBet;
                series = new HashMap<>();
                bets = new HashMap<>();
                init();
        }
        public void init() {
                series.clear();
                bets.clear();
                profit = 0.0;
                losingInRow = 0;
                currentBet = initialBet;
                failCount = 0;
        }
        public int getLosingInRow() {
                return losingInRow;
        }
        public void printSeries() {
                System.out.println("profit: "+profit+" fails: "+failCount+"("+failCount/(double)ITERATIONS*100.0+"%)");
                System.out.println(series.toString());
                System.out.println(bets.toString());
                System.out.println();
        }
        public void play() {
                profit -= currentBet;
                if(RANDOM.nextBoolean()) {
                        double prize = currentBet*2.0;
                        double commission = prize*COMMISSION;
                        if(commission>MAX_COMMISSION) commission = MAX_COMMISSION;
                        
                        if(series.get(losingInRow)==null) series.put(losingInRow, 1);
                        else series.put(losingInRow, series.get(losingInRow)+1);
                        
                        currentBet = initialBet;
                        losingInRow = 0;
                        profit += prize-commission;
                }
                else {
                        currentBet = currentBet * MARTIN_KOEFF;
                        losingInRow++;
                        if(losingInRow>MAX_SERIES) {
                                currentBet = initialBet;
                                losingInRow = 0;
                                failCount++;
                        }
                        if(bets.get(losingInRow)==null) bets.put(losingInRow, currentBet);
                }
        }
        
        public static void main(String[] args) {
                CheckupCoinGame coinGame = new CheckupCoinGame(0.1);
                for(int i=0; i<REPETITION; i++) {
                        coinGame.init();
                        for(long j=0; j<ITERATIONS; j++) {
                                coinGame.play();
                        }
                        while(coinGame.getLosingInRow()!=0) coinGame.play();
                        coinGame.printSeries();
                }
        }
        
}

De qualquer forma, eu testei, se você suportar perdas em qualquer combinação (após 0,2,3,20 - qualquer) - a expectativa é sempre ZERO em testes sem comissão. Portanto, não há nenhuma vantagem (ao contrário do primeiro caso).

Aqui estão os resultados onde está previsto um aumento máximo de 3 vezes:

profit: 1064.4000000010242 fails: 104485(3.313197615423643%)
{0=841720, 1=420343, 2=210167, 3=105689}
{0=0.1, 1=0.2, 2=0.4, 3=0.8}
profit: -592.5000000111686 fails: 105469(3.344400050735667%)
{0=840210, 1=420909, 2=210267, 3=104724}
{0=0.1, 1=0.2, 2=0.4, 3=0.8}
profit: 89.59999999777897 fails: 105038(3.3307331303906644%)
{0=840330, 1=420664, 2=210097, 3=105375}
{0=0.1, 1=0.2, 2=0.4, 3=0.8}
profit: 133.59999999348236 fails: 105075(3.331906392694064%)
{0=841801, 1=420508, 2=210124, 3=105028}
{0=0.1, 1=0.2, 2=0.4, 3=0.8}
profit: -9.599999996863112 fails: 105251(3.337487316083206%)
{0=844023, 1=420160, 2=209691, 3=104795}
{0=0.1, 1=0.2, 2=0.4, 3=0.8}
profit: 701.9999999914036 fails: 104714(3.320459157787925%)
{0=840924, 1=421350, 2=210704, 3=104752}
{0=0.1, 1=0.2, 2=0.4, 3=0.8}
profit: -962.3000000318344 fails: 105685(3.3512493658041604%)
{0=840870, 1=419495, 2=210148, 3=105139}
{0=0.1, 1=0.2, 2=0.4, 3=0.8}
profit: 746.2999999787268 fails: 104627(3.3177004058853377%)
{0=840081, 1=420623, 2=210889, 3=105275}
{0=0.1, 1=0.2, 2=0.4, 3=0.8}
profit: 716.9999999892076 fails: 104750(3.3216007102993403%)
{0=842449, 1=420843, 2=210046, 3=105082}
{0=0.1, 1=0.2, 2=0.4, 3=0.8}
profit: 788.0999999872712 fails: 104674(3.319190766108574%)
{0=842199, 1=420400, 2=209663, 3=105729}
{0=0.1, 1=0.2, 2=0.4, 3=0.8}

Em mais de 3% dos casos o incômodo acontece.

Não vejo nenhum sentido para descrever algo aqui e contar a banca necessária, já que a expectativa é zero, com a comissão, é claro, negativa.

 

Nos casos em que você suporta a perda - nenhuma expectativa se aplica a qualquer multiplicador, seja 2, ou qualquer outro, eu tentei 1,5, 1,75, 3,0. Não há diferença, apenas quanto maior o valor, maior a variação.

Pergunto-me, e se eu não suportar perder, mas também tentar multiplicar não por 2,0, e também olhar para outras variações. Intuitivamente, parece que alguma multiplicação de 1 para 2 também deveria dar resultados. De qualquer forma, no caso do 1,5, vê-se claramente que ele não dá nenhuma vantagem, zero. No caso de 1,75 não é tão claro de uma vez, ou é zero também, ou alguma vantagem microscópica (sem comissão) ainda existe, eu estou inclinado para a última opção - teste de 2 bilhões de jogos:

profit: 2766267.3014452904 fails: 0(0.0%)
{0=499979571, 1=250013092, 2=124999950, 3=62494015, 4=31247634, 5=15626081, 6=7812455, 7=3906885, 8=1952484, 9=977436, 10=488396, 11=244308, 12=122312, 13=61360, 14=30526, 15=15472, 16=7708, 17=3869, 18=1944, 19=881, 20=496, 21=224, 22=112, 23=62, 24=34, 25=11, 26=7, 27=3, 28=1, 29=1}
{1=0.175, 2=0.30625, 3=0.5359375, 4=0.9378906, 5=1.6413085, 6=2.87229, 7=5.0265074, 8=8.796388, 9=15.393679, 10=26.938938, 11=47.143143, 12=82.5005, 13=144.37589, 14=252.6578, 15=442.15115, 16=773.7645, 17=1354.0879, 18=2369.6538, 19=4146.894, 20=7257.0645, 21=12699.863, 22=22224.762, 23=38893.332, 24=68063.33, 25=119110.83, 26=208443.95, 27=364776.9, 28=638359.56, 29=1117129.2}

Ganhe2766267 / 2.000.000.000.000 = 0,0013831335(ou seja, 1/10 de centavo a 10 centavos de aposta, isso não é nada).

Aumenta mais ou igual a 2 trabalhos, é claro que, em desacordo com 3,0, a banca necessária será necessária muito mais, a expectativa é maior.

Em que mais você pode pensar? Reduzindo? Algumas condições complicadas, tais como "Em um drawdown de x vamos aumentá-lo uma vez até o fim do drawdown".

Até agora não consegui encontrar nenhum benefício em usá-lo, não tive esperanças, só tinha que ter certeza, e seria estranho se funcionasse, e não havia nada de que obter recursos, grosso modo falando.

 
Stanislav Aksenov:

...

Em que mais você pode pensar? Diminuir? Algum tipo de condição complicada como "Em um drawdown em x aumenta uma vez até que você saia do drawdown".

Até agora não consegui encontrar nenhuma vantagem em usá-la, não tive esperanças, só tinha que ter certeza, e seria estranho se funcionasse, e não havia nada para obter recursos de aproximadamente nada.


Posso fazer uma pergunta sobre a "psicologia" do que está acontecendo...?

Não entendo a persistência com a qual muitos tentam espremer o lucro de um "componente".
Por que não é a direção "Como combinar com tanto sucesso vários "componentes" diversos em um SISTEMA capaz de gerar lucros"? ?..
Quanto você usará um virabrequim (mesmo se for o virabrequim do famoso trator bielorrusso)?

 

Stanislav Aksenov, o que há para pensar?

Tudo foi calculado há muito tempo. Martingale é um sistema viável, mas o lucro é muito pequeno em comparação com o depósito necessário.

É necessário definir a probabilidade de ganhar em uma única tentativa (digamos, 0,6, mas pode ser menos da metade), o número de séries (digamos, 100000) e a probabilidade de não perder durante todo esse tempo (digamos, 99%).

Um cálculo simples mostra que temos que suportar 18 perdas consecutivas, o que significa que o tamanho do depósito tem que ser igual a 256K apostas iniciais (o resultado total seria +100K apostas com 99% de probabilidade e -256K apostas com 1% de probabilidade).

Dê-nos condições diferentes - todas facilmente recalculadas.

Por que fazer alguns cálculos assustadores?

 
George Merts:

Stanislav Aksenov, o que há para pensar?

Por que fazer alguns cálculos assustadores?


Onde eles são assustadores? Pelo contrário, eu me esforço para mostrar/prover da maneira mais clara possível, sem fórmulas, de um ponto de vista prático, pela experiência.

A propósito, uma série de 18 sai uma vez em um milhão, o que é muito menos de 1%. Uma série de 5 vezes seguidas acontece 0,8% do tempo. Por que isso equivaleria a +100 apostas? O resultado total será zero.

 
Stanislav Aksenov:

A propósito, uma série de 18 sai uma vez em um milhão, o que é muito menos de 1%.

1% é a probabilidade de vazamento de todos os 100.000 episódios.

Trata-se de outra coisa - o martingale trata de transferir pequenas perdas freqüentes para uma zona de perdas raras e grandes. E a única possibilidade de permanecer em lucro com ela é transferir as perdas para a zona de perdas muito raras e interromper o comércio a tempo. Mas, neste caso, a exigência de depósito é desproporcionalmente grande. E o sentido é perdido, o proprietário de tal depósito encontrará um uso muito mais lucrativo para ele.

 
George Merts:

1% é a probabilidade de perder toda a série 100.000.

O ponto é diferente - o martingale trata de deslocar pequenas perdas frequentes para uma zona de perdas raras e grandes. E a única maneira de manter o lucro com ela é transferir as perdas para a zona de superfrequência, e parar de negociar a tempo. Mas, neste caso, a exigência de depósito é desproporcionalmente grande. E o sentido é perdido, o proprietário de tal depósito encontrará um uso muito mais lucrativo para ele.

É claro, você pode abrir uma padaria).
 
George Merts:

1% é a probabilidade de perder toda a série 100.000.

Trata-se de outra coisa - o martingale trata de deslocar pequenas perdas freqüentes para uma zona de perdas raras e grandes. E a única maneira de permanecer no preto é mover as perdas para a zona de superfrequência, e parar de negociar a tempo. Mas, neste caso, a exigência de depósito é desproporcionalmente grande. E o sentido é perdido, o proprietário de tal depósito encontrará um uso muito mais lucrativo para ele.


Isso se você olhar para isso de maneira diferente, faz mais sentido para mim olhar o lucro em dólares, ele tenderá para zero se você contar apenas com uma série de 18 perdas consecutivas.

Concordo com sua conclusão, cheguei exatamente à mesma conclusão.