- ReduceToBidiagonal
- ReflectBidiagonalToQP
- ReduceSymmetricToTridiagonal
- ReflectTridiagonalToQ
ReflectTridiagonalToQ
Generates orthogonal matrix Q which is defined as the product of n-1 elementary reflectors of order n, as returned by ReduceSymmetricToTridiagonal:
in upper case Q = H(n-1) . . . H(2) H(1),
in lower case Q = H(1) H(2) . . . H(n-1).
Lapack functions ORGTR, UNGTR.
As input is used transformed matrix reflect_q with the same sizes n-by-n as in original matrix A.
Computing for type matrix<double>
bool matrix::ReflectTridiagonalToQ(
|
Computing for type matrix<float>
bool matrix::ReflectTridiagonalToQ(
|
Computing for type matrix<complex>
bool matrix::ReflectTridiagonalToQ(
|
Computing for type matrix<complexf>
bool matrix::ReflectTridiagonalToQ(
|
Parameters
tau_q
[in] Vector of the scalar factors of the elementary reflectors which represent the orthogonal matrix Q.
Q
[out] Orthogonal matrix Q.
Return Value
Return true if successful, otherwise false in case of an error.