Andrey Dik / 프로필
- 정보
11+ 년도
경험
|
5
제품
|
84
데몬 버전
|
14
작업
|
0
거래 신호
|
0
구독자
|
A group for communication on optimization issues: https://t.me/+vazsAAcney4zYmZi
My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5
All my publications: https://www.mql5.com/en/users/joo/publications
I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.
I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
My Products:
https://www.mql5.com/en/users/joo/seller
Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp
1. Increased the speed of the library.
2. The scheme of checking for duplicates has been improved.
https://www.mql5.com/ru/market/product/92455
대장균 박테리아 먹이 채집 전략은 과학자들이 BFO 최적화 알고리즘을 개발하는 데 영감을 주었습니다. 이 알고리즘에는 최적화에 대한 독창적인 아이디어와 유망한 접근 방식이며 앞으로 더 연구해 볼 만한 가치가 있습니다.
https://www.mql5.com/ru/market/product/92455
다양한 조건에서 살아남는 잡초의 놀라운 능력은 강력한 최적화 알고리즘을 만들기 위한 아이디어가 되었습니다. IWO는 앞서 검토한 알고리즘 중 가장 우수한 알고리즘 중 하나입니다.
AO Core is the core of the optimization algorithm, it is a library built on the author's HMA (hybrid metaheuristic algorithm) algorithm. Pay attention to the MT5 Optimization Booster product , which makes it very easy to manage the regular MT5 optimizer . An example of using AO Core is described in the article: https://www.mql5.com/ru/articles/14183 https://www.mql5.com/en/blogs/post/756510 This hybrid algorithm is based on a genetic algorithm and contains the best qualities and properties of
이 기사에서는 부드러운 함수에서 좋은 수렴을 보이는 박쥐 알고리즘(BA)에 대해 알아볼 것입니다.
이 글에서는 반딧불이 알고리즘(FA) 최적화 방법에 대해 살펴보겠습니다. 수정을 통해 알고리즘은 주변부의 존재에서평점 테이블의 실제 리더가 되었습니다.
물고기 떼 검색(FSS)은 대부분의 물고기(최대 80%)가 친척들로 구성된 집단인 물고기 떼에서 물고기의 행동에서 영감을 얻은 새로운 최적화 알고리즘입니다. 물고기의 떼가 먹이 사냥의 효율성과 포식자로부터 보호하는 데 중요한 역할을 한다는 것은 이미 입증된 사실입니다.
다음으로 살펴볼 알고리즘은 레비 비행을 사용한 뻐꾸기 검색 최적화입니다. 이는 최신의 최적화 알고리즘 중 하나이며 인기 있는 새로운 알고즘 중 하나입니다.
이번에는 최신의 최적화 알고리즘 중 하나인 그레이 울프 최적화에 대해 알아봅시다. 테스트 함수에서의 오리지널 행동은 이 알고리즘을 앞서 고려한 알고리즘 중 가장 흥미로운 알고리즘 중 하나로 만듭니다. 이 알고리즘은 신경망 훈련, 많은 변수가 있는 부드러운 함수의 훈련에 사용되는 최고의 알고리즘 중 하나입니다.
이 글에서는 인공 꿀벌 군집의 알고리즘을 연구하고 기능적 공간을 연구하는 새로운 원칙을 더해 우리의 지식을 보완할 것입니다. 이 글에서는 고전적인 버전의 알고리즘에 대한 저의 해석을 보여드리겠습니다.
이번에는 개미 군집 최적화 알고리즘을 분석해 보겠습니다. 이 알고리즘은 매우 흥미롭고 복잡합니다. 이 글에서는 새로운 유형의 ACO를 만들기 위한 시도를 할 것입니다.
이 글에서는 널리 사용되는 파티클 스웜 최적화(PSO) 알고리즘에 대해 살펴보겠습니다. 이전에는 수렴, 수렴 속도, 안정성, 확장성과 같은 최적화 알고리즘의 중요한 특성에 대해 알아보고 테스트 스탠드를 개발했으며 가장 간단한 RNG 알고리즘에 대해 알아보았습니다.
https://www.mql5.com/ru/market/product/86687
Thanks for the discussion. I will be glad to receive any feedback.:)
https://www.mql5.com/ru/market/product/86716
в составе простенького советника:
A professional tool for trading - the divergence indicator between the AO and the price, which allows you to receive a signal about a trend reversal in a timely manner or catch price pullback movements (depending on the settings). The indicator settings allow you to adjust the strength of the divergence due to the angle of the AO peaks and the percentage change in price, which makes it possible to fine-tune the signal strength. The indicator code is optimized and is tested very quickly as part
A professional tool for trading - the divergence indicator between the RSI and the price, which allows you to receive a signal about a trend reversal in a timely manner or catch price pullback movements (depending on the settings). The indicator settings allow you to adjust the strength of the divergence due to the angle of the RSI peaks and the percentage change in price, which makes it possible to fine-tune the signal strength. The indicator code is optimized and is tested very quickly as
https://www.mql5.com/ru/market/product/86687