Dmitriy Gizlyk
Dmitriy Gizlyk
  • 정보
11+ 년도
경험
0
제품
0
데몬 버전
134
작업
0
거래 신호
0
구독자
Professional writing programs of any complexity for MT4, MT5, C#.
Dmitriy Gizlyk
게재된 기고글 Нейросети в трейдинге: Модели пространства состояний
Нейросети в трейдинге: Модели пространства состояний

В основе большого количества рассмотренных нами ранее моделей лежит архитектура Transformer. Однако они могут быть неэффективны при работе с длинными последовательностями. И в этой статье я предлагаю познакомиться с альтернативным направлением прогнозирования временных рядов на основе моделей пространства состояний.

1
Dmitriy Gizlyk
게재된 기고글 Нейросети в трейдинге: Инъекция глобальной информации в независимые каналы (InjectTST)
Нейросети в трейдинге: Инъекция глобальной информации в независимые каналы (InjectTST)

Большинство современных методов прогнозирования мультимодальных временных рядов используют подход независимых каналов. Тем самым игнорируется природная зависимость различных каналов одного временного ряда. Разумное использование 2 подходов (независимых и смешанных каналов) является ключом к повышению эффективности моделей.

1
Dmitriy Gizlyk
게재된 기고글 Нейросети в трейдинге: Практические результаты метода TEMPO
Нейросети в трейдинге: Практические результаты метода TEMPO

Продолжаем знакомство с методом TEMPO. И в данной статье мы оценим фактическую эффективность предложенных подходов на реальных исторических данных.

2
Dmitriy Gizlyk
게재된 기고글 Нейросети в трейдинге: Использование языковых моделей для прогнозирования временных рядов
Нейросети в трейдинге: Использование языковых моделей для прогнозирования временных рядов

Мы продолжаем рассмотрения моделей прогнозирования временных рядов. И в данной статье я предлагаю познакомиться с комплексным алгоритмом, построенным на использовании предварительно обученной языковой модели.

1
Dmitriy Gizlyk
게재된 기고글 Нейросети в трейдинге: "Легкие" модели прогнозирования временных рядов
Нейросети в трейдинге: "Легкие" модели прогнозирования временных рядов

Легковесные модели прогнозирования временных рядов обеспечивают высокую производительность, используя минимальное количество параметров. Что, в свою очередь, снижает расход вычислительных ресурсов и ускоряет принятие решений. При этом они достигают качества прогнозов, сопоставимого с более сложными моделями.

1
Dmitriy Gizlyk
게재된 기고글 Нейросети в трейдинге: Снижение потребления памяти методом оптимизации Adam (Adam-mini)
Нейросети в трейдинге: Снижение потребления памяти методом оптимизации Adam (Adam-mini)

Одним из направлений повышения эффективности процесса обучения и сходимости моделей является улучшение методов оптимизации. Adam-mini представляет собой адаптивный метод оптимизации, разработанный для улучшения базового алгоритма Adam.

1
Dmitriy Gizlyk
게재된 기고글 Нейросети в трейдинге: Пространственно-временная нейронная сеть (STNN)
Нейросети в трейдинге: Пространственно-временная нейронная сеть (STNN)

В данной статье мы поговорим об использовании пространственно-временных преобразований для эффективного прогнозирования предстоящего ценового движения. Для повышения точности численного прогнозирования в STNN был предложен механизм непрерывного внимания, который позволяет модели лучше учитывать важные аспекты данных.

2
Dmitriy Gizlyk
게재된 기고글 Нейросети в трейдинге: Модель двойного внимания для прогнозирования трендов
Нейросети в трейдинге: Модель двойного внимания для прогнозирования трендов

Продолжаем разговор об использовании кусочно-линейного представления временных рядов, начатый в предыдущей статье. И сегодня мы поговорим о комбинировании данного метода с другими подходами к анализу временных рядов для повышения качества прогнозирования трендов ценовых движений.

1
Dmitriy Gizlyk
게재된 기고글 Нейросети в трейдинге: Кусочно-линейное представление временных рядов
Нейросети в трейдинге: Кусочно-линейное представление временных рядов

Эта статья несколько отличается от предыдущих работ данной серии. В ней мы поговорим об альтернативном представлении временных рядов. Кусочно-линейное представление временных рядов — это метод аппроксимации временного ряда с помощью линейных функций на небольших интервалах.

2
Dmitriy Gizlyk
게재된 기고글 Нейросети — это просто (Часть 97): Обучение модели с использованием MSFformer
Нейросети — это просто (Часть 97): Обучение модели с использованием MSFformer

При изучении различных архитектур построения моделей мы мало уделяем внимания процессу обучения моделей. В этой статье я попытаюсь восполнить этот пробел.

2
Dmitriy Gizlyk
게재된 기고글 Нейросети — это просто (Часть 96): Многоуровневое извлечение признаков (MSFformer)
Нейросети — это просто (Часть 96): Многоуровневое извлечение признаков (MSFformer)

Эффективное извлечение и объединение долгосрочных зависимостей и краткосрочных характеристик остаются важной задачей в анализе временных рядов. Правильное их понимание и интеграция необходимы для создания точных и надежных предсказательных моделей.

1
Dmitriy Gizlyk
게재된 기고글 Нейросети — это просто (Часть 95): Снижение потребления памяти в моделях Transformer
Нейросети — это просто (Часть 95): Снижение потребления памяти в моделях Transformer

Модели на основе архитектуры Transformer демонстрируют высокую эффективность, однако их использование осложняется большими затратами ресурсов как на этапе обучения, так и в процессе эксплуатации. В этой статье я предлагаю познакомиться с алгоритмами, которые позволяют уменьшить использование памяти такими моделями.

3
Dmitriy Gizlyk
게재된 기고글 Нейросети — это просто (Часть 94): Оптимизация последовательности исходных данных
Нейросети — это просто (Часть 94): Оптимизация последовательности исходных данных

При работе с временными рядами мы всегда используем исходные данные в их исторической последовательности. Но является ли это оптимальным вариантом? Существует мнение, что изменение последовательности исходных данных позволит повысить эффективность обучаемых моделей. В данной статье я предлагаю вам познакомиться с одним из таких методов.

2
Dmitriy Gizlyk
게재된 기고글 Нейросети — это просто (Часть 93): Адаптивное прогнозирование в частотной и временной областях (Окончание)
Нейросети — это просто (Часть 93): Адаптивное прогнозирование в частотной и временной областях (Окончание)

В данной статье мы продолжаем реализацию подходов ATFNet — модели, которая адаптивно объединяет результаты 2 блоков (частотного и временного) прогнозирования временных рядов

1
Dmitriy Gizlyk
게재된 기고글 Нейросети — это просто (Часть 92): Адаптивное прогнозирование в частотной и временной областях
Нейросети — это просто (Часть 92): Адаптивное прогнозирование в частотной и временной областях

Авторы метода FreDF экспериментально подтвердили преимущество комбинированного прогнозирования в частотной и временной областях. Однако применение весового гиперпараметра не является оптимальным для нестационарных временных рядов. В данной статье я предлагаю познакомиться с методом адаптивного сочетания прогнозов в частотной и временной областях.

Dmitriy Gizlyk
게재된 기고글 Neural Networks Made Easy (Part 91): Frequency Domain Forecasting (FreDF)
Neural Networks Made Easy (Part 91): Frequency Domain Forecasting (FreDF)

We continue to explore the analysis and forecasting of time series in the frequency domain. In this article, we will get acquainted with a new method to forecast data in the frequency domain, which can be added to many of the algorithms we have studied previously.

1
Dmitriy Gizlyk
게재된 기고글 Neural Networks Made Easy (Part 90): Frequency Interpolation of Time Series (FITS)
Neural Networks Made Easy (Part 90): Frequency Interpolation of Time Series (FITS)

By studying the FEDformer method, we opened the door to the frequency domain of time series representation. In this new article, we will continue the topic we started. We will consider a method with which we can not only conduct an analysis, but also predict subsequent states in a particular area.

1
Dmitriy Gizlyk
게재된 기고글 Neural networks made easy (Part 89): Frequency Enhanced Decomposition Transformer (FEDformer)
Neural networks made easy (Part 89): Frequency Enhanced Decomposition Transformer (FEDformer)

All the models we have considered so far analyze the state of the environment as a time sequence. However, the time series can also be represented in the form of frequency features. In this article, I introduce you to an algorithm that uses frequency components of a time sequence to predict future states.

1
Dmitriy Gizlyk
게재된 기고글 Neural Networks Made Easy (Part 88): Time-Series Dense Encoder (TiDE)
Neural Networks Made Easy (Part 88): Time-Series Dense Encoder (TiDE)

In an attempt to obtain the most accurate forecasts, researchers often complicate forecasting models. Which in turn leads to increased model training and maintenance costs. Is such an increase always justified? This article introduces an algorithm that uses the simplicity and speed of linear models and demonstrates results on par with the best models with a more complex architecture.

2
Dmitriy Gizlyk
게재된 기고글 Neural Networks Made Easy (Part 87): Time Series Patching
Neural Networks Made Easy (Part 87): Time Series Patching

Forecasting plays an important role in time series analysis. In the new article, we will talk about the benefits of time series patching.

2