• 情報
1 年
経験
5
製品
13
デモバージョン
0
ジョブ
0
シグナル
0
購読者
こんにちは、私の名前はガムで、私はあなたのような投資家が数年進むのを手助けしています。

より良い結果をより速く得る方法を知りたい場合は、正しい場所にいます。

私の無料の専門アドバイザーのいずれかで始めるか、知識に飢えている場合は私のいくつかの出版物を読むことができます。

何を待っているのですか?成功への終身のパートナーシップはここから始まります。
Gamuchirai Zororo Ndawana
パブリッシュされた記事Reimagining Classic Strategies (Part XI): Moving Average Cross Over (II)
Reimagining Classic Strategies (Part XI): Moving Average Cross Over (II)

The moving averages and the stochastic oscillator could be used to generate trend following trading signals. However, these signals will only be observed after the price action has occurred. We can effectively overcome this inherent lag in technical indicators using AI. This article will teach you how to create a fully autonomous AI-powered Expert Advisor in a manner that can improve any of your existing trading strategies. Even the oldest trading strategy possible can be improved.

1
Gamuchirai Zororo Ndawana
パブリッシュされた記事Feature Engineering With Python And MQL5 (Part II): Angle Of Price
Feature Engineering With Python And MQL5 (Part II): Angle Of Price

There are many posts in the MQL5 Forum asking for help calculating the slope of price changes. This article will demonstrate one possible way of calculating the angle formed by the changes in price in any market you wish to trade. Additionally, we will answer if engineering this new feature is worth the extra effort and time invested. We will explore if the slope of the price can improve any of our AI model's accuracy when forecasting the USDZAR pair on the M1.

2
Gamuchirai Zororo Ndawana
パブリッシュされた記事Multiple Symbol Analysis With Python And MQL5 (Part II): Principal Components Analysis For Portfolio Optimization
Multiple Symbol Analysis With Python And MQL5 (Part II): Principal Components Analysis For Portfolio Optimization

Managing trading account risk is a challenge for all traders. How can we develop trading applications that dynamically learn high, medium, and low-risk modes for various symbols in MetaTrader 5? By using PCA, we gain better control over portfolio variance. I’ll demonstrate how to create applications that learn these three risk modes from market data fetched from MetaTrader 5.

1
Gamuchirai Zororo Ndawana
パブリッシュされた記事Self Optimizing Expert Advisor With MQL5 And Python (Part VI): Taking Advantage of Deep Double Descent
Self Optimizing Expert Advisor With MQL5 And Python (Part VI): Taking Advantage of Deep Double Descent

Traditional machine learning teaches practitioners to be vigilant not to overfit their models. However, this ideology is being challenged by new insights published by diligent researches from Harvard, who have discovered that what appears to be overfitting may in some circumstances be the results of terminating your training procedures prematurely. We will demonstrate how we can use the ideas published in the research paper, to improve our use of AI in forecasting market returns.

1
Gamuchirai Zororo Ndawana
パブリッシュされた記事Feature Engineering With Python And MQL5 (Part I): Forecasting Moving Averages For Long-Range AI Models
Feature Engineering With Python And MQL5 (Part I): Forecasting Moving Averages For Long-Range AI Models

The moving averages are by far the best indicators for our AI models to predict. However, we can improve our accuracy even further by carefully transforming our data. This article will demonstrate, how you can build AI Models capable of forecasting further into the future than you may currently be practicing without significant drops to your accuracy levels. It is truly remarkable, how useful the moving averages are.

1
Gamuchirai Zororo Ndawana
パブリッシュされた記事Reimagining Classic Strategies (Part X): Can AI Power The MACD?
Reimagining Classic Strategies (Part X): Can AI Power The MACD?

Join us as we empirically analyzed the MACD indicator, to test if applying AI to a strategy, including the indicator, would yield any improvements in our accuracy on forecasting the EURUSD. We simultaneously assessed if the indicator itself is easier to predict than price, as well as if the indicator's value is predictive of future price levels. We will furnish you with the information you need to decide whether you should consider investing your time into integrating the MACD in your AI trading strategies.

1
Gamuchirai Zororo Ndawana
パブリッシュされた記事Reimagining Classic Strategies (Part IX): Multiple Time Frame Analysis (II)
Reimagining Classic Strategies (Part IX): Multiple Time Frame Analysis (II)

In today's discussion, we examine the strategy of multiple time-frame analysis to learn on which time frame our AI model performs best. Our analysis leads us to conclude that the Monthly and Hourly time-frames produce models with relatively low error rates on the EURUSD pair. We used this to our advantage and created a trading algorithm that makes AI predictions on the Monthly time frame, and executes its trades on the Hourly time frame.

1
Gamuchirai Zororo Ndawana
パブリッシュされた記事Self Optimizing Expert Advisor With MQL5 And Python (Part V): Deep Markov Models
Self Optimizing Expert Advisor With MQL5 And Python (Part V): Deep Markov Models

In this discussion, we will apply a simple Markov Chain on an RSI Indicator, to observe how price behaves after the indicator passes through key levels. We concluded that the strongest buy and sell signals on the NZDJPY pair are generated when the RSI is in the 11-20 range and 71-80 range, respectively. We will demonstrate how you can manipulate your data, to create optimal trading strategies that are learned directly from the data you have. Furthermore, we will demonstrate how to train a deep neural network to learn to use the transition matrix optimally.

1
Gamuchirai Zororo Ndawana
パブリッシュされた記事Gain An Edge Over Any Market (Part V): FRED EURUSD Alternative Data
Gain An Edge Over Any Market (Part V): FRED EURUSD Alternative Data

In today’s discussion, we used alternative Daily data from the St. Louis Federal Reserve on the Broad US-Dollar Index and a collection of other macroeconomic indicators to predict the EURUSD future exchange rate. Unfortunately, while the data appears to have almost perfect correlation, we failed to realize any material gains in our model accuracy, possibly suggesting to us that investors may be better off using ordinary market quotes instead.

1
Gamuchirai Zororo Ndawana
パブリッシュされた記事Multiple Symbol Analysis With Python And MQL5 (Part I): NASDAQ Integrated Circuit Makers
Multiple Symbol Analysis With Python And MQL5 (Part I): NASDAQ Integrated Circuit Makers

Join us as we discuss how you can use AI to optimize your position sizing and order quantities to maximize the returns of your portfolio. We will showcase how to algorithmically identify an optimal portfolio and tailor your portfolio to your returns expectations or risk tolerance levels. In this discussion, we will use the SciPy library and the MQL5 language to create an optimal and diversified portfolio using all the data we have.

1
Gamuchirai Zororo Ndawana
パブリッシュされた記事MQL5で古典的な戦略を再構築する(第3回):FTSE100予想
MQL5で古典的な戦略を再構築する(第3回):FTSE100予想

この連載では、よく知られた取引戦略を再検討し、AIを使って改善できるかどうかを検証します。本日の記事では、FTSE100について調べ、指数を構成する個別銘柄の一部を使って指数の予測を試みます。

Gamuchirai Zororo Ndawana
パブリッシュされた記事Gain An Edge Over Any Market (Part IV): CBOE Euro And Gold Volatility Indexes
Gain An Edge Over Any Market (Part IV): CBOE Euro And Gold Volatility Indexes

We will analyze alternative data curated by the Chicago Board Of Options Exchange (CBOE) to improve the accuracy of our deep neural networks when forecasting the XAUEUR symbol.

1
Gamuchirai Zororo Ndawana
パブリッシュされた記事Self Optimizing Expert Advisor With MQL5 And Python (Part IV): Stacking Models
Self Optimizing Expert Advisor With MQL5 And Python (Part IV): Stacking Models

Today, we will demonstrate how you can build AI-powered trading applications capable of learning from their own mistakes. We will demonstrate a technique known as stacking, whereby we use 2 models to make 1 prediction. The first model is typically a weaker learner, and the second model is typically a more powerful model that learns the residuals of our weaker learner. Our goal is to create an ensemble of models, to hopefully attain higher accuracy.

1
Gamuchirai Zororo Ndawana
Gamuchirai Zororo Ndawana
Cape-Town was a blast, I'd recommend this trip to anyone.
Gamuchirai Zororo Ndawana
パブリッシュされた記事MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第3回):Boom 1000アルゴリズムの解読
MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第3回):Boom 1000アルゴリズムの解読

本連載では、動的な市場状況に自律的に適応できるエキスパートアドバイザー(EA)を構築する方法について説明します。本日の記事では、Derivの合成市場に合わせてディープニューラルネットワークを調整してみます。

Gamuchirai Zororo Ndawana
パブリッシュされた記事MQL5で古典的な戦略を再構築する(後編):FTSE100と英国債
MQL5で古典的な戦略を再構築する(後編):FTSE100と英国債

この連載では、人気のある取引戦略を探り、AIを使ってその改善を試みます。今日の記事では、株式市場と債券市場の関係に基づく古典的な取引戦略を再考します。

Gamuchirai Zororo Ndawana
パブリッシュされた記事古典的な戦略を再構築する(第8回):USDCADをめぐる為替市場と貴金属市場
古典的な戦略を再構築する(第8回):USDCADをめぐる為替市場と貴金属市場

この連載では、よく知られた取引戦略を再検討し、AIを使って改善できるかどうかを検証します。本日のディスカッションでは、貴金属と通貨の間に信頼できる関係があるかどうかを検証します。

Gamuchirai Zororo Ndawana
パブリッシュされた記事古典的な戦略を再構築する(第7回):USDJPYにおける外国為替市場とソブリン債務分析
古典的な戦略を再構築する(第7回):USDJPYにおける外国為替市場とソブリン債務分析

本日の記事では、今後の為替レートと国債の関係を分析します。債券は、最も人気のある固定利付証券の1つであり、今回の議論の焦点となります。AIを使用して従来の戦略を改善できるかどうかを一緒に検討しましょう。

Gamuchirai Zororo Ndawana
パブリッシュされた記事どんな市場でも優位性を得る方法(第3回):VISA消費指数
どんな市場でも優位性を得る方法(第3回):VISA消費指数

ビッグデータの世界では、取引戦略を向上させる可能性を秘めた数百万もの代替データセットが存在します。この連載では、最も有益な公共データセットを特定するお手伝いをします。

Gamuchirai Zororo Ndawana
パブリッシュされた記事古典的な戦略を再構築する(第6回):多時間枠分析
古典的な戦略を再構築する(第6回):多時間枠分析

この連載では、古典的な戦略を再検討し、AIを使って改善できるかどうかを検証します。本日の記事では、人気の高い多時間枠分析という戦略を検証し、AIによって戦略が強化されるかどうかを判断します。

123