• 情報
1 年
経験
6
製品
19
デモバージョン
0
ジョブ
0
シグナル
0
購読者
こんにちは、私の名前はガムで、私はあなたのような投資家が数年進むのを手助けしています。

より良い結果をより速く得る方法を知りたい場合は、正しい場所にいます。

私の無料の専門アドバイザーのいずれかで始めるか、知識に飢えている場合は私のいくつかの出版物を読むことができます。

何を待っているのですか?成功への終身のパートナーシップはここから始まります。
Gamuchirai Zororo Ndawana
パブリッシュされた記事Self Optimizing Expert Advisors in MQL5 (Part 8): Multiple Strategy Analysis (3) — Weighted Voting Policy
Self Optimizing Expert Advisors in MQL5 (Part 8): Multiple Strategy Analysis (3) — Weighted Voting Policy

This article explores how determining the optimal number of strategies in an ensemble can be a complex task that is easier to solve through the use of the MetaTrader 5 genetic optimizer. The MQL5 Cloud is also employed as a key resource for accelerating backtesting and optimization. All in all, our discussion here sets the stage for developing statistical models to evaluate and improve trading strategies based on our initial ensemble results.

Gamuchirai Zororo Ndawana
パブリッシュされた記事Self Optimizing Expert Advisors in MQL5 (Part 8): Multiple Strategy Analysis (2)
Self Optimizing Expert Advisors in MQL5 (Part 8): Multiple Strategy Analysis (2)

Join us for our follow-up discussion, where we will merge our first two trading strategies into an ensemble trading strategy. We shall demonstrate the different schemes possible for combining multiple strategies and also how to exercise control over the parameter space, to ensure that effective optimization remains possible even as our parameter size grows.

3
Gamuchirai Zororo Ndawana
パブリッシュされた記事Reimagining Classic Strategies (Part 13): Taking Our Crossover Strategy to New Dimensions (Part 2)
Reimagining Classic Strategies (Part 13): Taking Our Crossover Strategy to New Dimensions (Part 2)

Join us in our discussion as we look for additional improvements to make to our moving-average cross over strategy to reduce the lag in our trading strategy to more reliable levels by leveraging our skills in data science. It is a well-studied fact that projecting your data to higher dimensions can at times improve the performance of your machine learning models. We will demonstrate what this practically means for you as a trader, and illustrate how you can weaponize this powerful principle using your MetaTrader 5 Terminal.

1
Gamuchirai Zororo Ndawana
パブリッシュされた記事Build Self Optimizing Expert Advisors in MQL5 (Part 8): Multiple Strategy Analysis
Build Self Optimizing Expert Advisors in MQL5 (Part 8): Multiple Strategy Analysis

How best can we combine multiple strategies to create a powerful ensemble strategy? Join us in this discussion as we look to fit together three different strategies into our trading application. Traders often employ specialized strategies for opening and closing positions, and we want to know if our machines can perform this task better. For our opening discussion, we will get familiar with the faculties of the strategy tester and the principles of OOP we will need for this task.

1
Gamuchirai Zororo Ndawana
パブリッシュされた記事Build Self Optimizing Expert Advisors in MQL5 (Part 7): Trading With Multiple Periods At Once
Build Self Optimizing Expert Advisors in MQL5 (Part 7): Trading With Multiple Periods At Once

In this series of articles, we have considered multiple different ways of identifying the best period to use our technical indicators with. Today, we shall demonstrate to the reader how they can instead perform the opposite logic, that is to say, instead of picking the single best period to use, we will demonstrate to the reader how to employ all available periods effectively. This approach reduces the amount of data discarded, and offers alternative use cases for machine learning algorithms beyond ordinary price prediction.

2
Gamuchirai Zororo Ndawana
パブリッシュされた記事Overcoming The Limitation of Machine Learning (Part 2): Lack of Reproducibility
Overcoming The Limitation of Machine Learning (Part 2): Lack of Reproducibility

The article explores why trading results can differ significantly between brokers, even when using the same strategy and financial symbol, due to decentralized pricing and data discrepancies. The piece helps MQL5 developers understand why their products may receive mixed reviews on the MQL5 Marketplace, and urges developers to tailor their approaches to specific brokers to ensure transparent and reproducible outcomes. This could grow to become an important domain-bound best practice that will serve our community well if the practice were to be widely adopted.

Gamuchirai Zororo Ndawana
パブリッシュされた記事Overcoming The Limitation of Machine Learning (Part 1): Lack of Interoperable Metrics
Overcoming The Limitation of Machine Learning (Part 1): Lack of Interoperable Metrics

There is a powerful and pervasive force quietly corrupting the collective efforts of our community to build reliable trading strategies that employ AI in any shape or form. This article establishes that part of the problems we face, are rooted in blind adherence to "best practices". By furnishing the reader with simple real-world market-based evidence, we will reason to the reader why we must refrain from such conduct, and rather adopt domain-bound best practices if our community should stand any chance of recovering the latent potential of AI.

Gamuchirai Zororo Ndawana
パブリッシュされた記事古典的な戦略を再構築する(第14回):高確率セットアップ
古典的な戦略を再構築する(第14回):高確率セットアップ

高確率セットアップ(high probability setups)は、私たちの取引コミュニティではよく知られていますが、残念ながら明確には定義されていません。この記事では、「高確率セットアップ」とは具体的に何かを、経験的かつアルゴリズム的な方法で定義し、それを特定して活用することを目指します。勾配ブースティング木を用いることで、任意の取引戦略のパフォーマンスを向上させる方法、そしてコンピュータに対して「何をすべきか」をより明確かつ意味のある形で伝える手段を、読者に示します。

Gamuchirai Zororo Ndawana
パブリッシュされた記事PythonとMQL5を使用した特徴量エンジニアリング(第4回):UMAP回帰によるローソク足パターン認識
PythonとMQL5を使用した特徴量エンジニアリング(第4回):UMAP回帰によるローソク足パターン認識

次元削減手法は、機械学習モデルのパフォーマンスを向上させるために広く用いられています。ここでは、UMAP (Uniform Manifold Approximation and Projection)という比較的新しい手法について説明します。UMAPは、古い手法に見られるデータの歪みや人工的な構造といった欠点を明確に克服することを目的として開発されました。UMAPは非常に強力な次元削減技術であり、似たローソク足を新たに効果的にグループ化できるため、アウトオブサンプル(未知データ)に対する誤差率を低減し、取引パフォーマンスを向上させることができます。

Gamuchirai Zororo Ndawana
パブリッシュされた記事MQL5で自己最適化エキスパートアドバイザーを構築する(第6回):自己適応型取引ルール(II)
MQL5で自己最適化エキスパートアドバイザーを構築する(第6回):自己適応型取引ルール(II)

本記事では、より良い売買シグナルを得るために、RSIのレベルと期間を最適化する方法を探ります。最適なRSI値を推定する手法や、グリッドサーチと統計モデルを用いた期間選定の自動化について紹介します。最後に、Pythonによる分析を活用しながら、MQL5でソリューションを実装します。私たちのアプローチは、複雑になりがちな問題をシンプルに解決することを目指した、実用的かつ分かりやすいものです。

Gamuchirai Zororo Ndawana
パブリッシュされた記事PythonとMQL5による多銘柄分析(第3回):三角為替レート
PythonとMQL5による多銘柄分析(第3回):三角為替レート

トレーダーは、誤ったシグナルによるドローダウンに直面することが多い一方で、確認を待ちすぎることで、有望な機会を逃すこともあります。本稿では、ドル建て銀価格(XAGUSD)、ユーロ建て銀価格(XAGEUR)、およびEURUSD為替レートを用いた三角裁定取引戦略を紹介し、市場のノイズをフィルタリングする方法を解説します。市場間の相関関係を活用することで、隠れた市場センチメントをリアルタイムで捉え、エントリータイミングをより洗練させることが可能になります。

Gamuchirai Zororo Ndawana
パブリッシュされた記事MQL5で自己最適化エキスパートアドバイザーを構築する(第6回):ストップアウト防止
MQL5で自己最適化エキスパートアドバイザーを構築する(第6回):ストップアウト防止

本日は、勝ちトレードでストップアウトされる回数を最小限に抑えるためのアルゴリズム的手法を探るディスカッションにご参加ください。この問題は非常に難易度が高く、取引コミュニティで見られる多くの提案は、明確で一貫したルールに欠けているのが実情です。私たちはこの課題に対してアルゴリズム的なアプローチを用いることで、トレードの収益性を高め、1回あたりの平均損失を減らすことに成功しました。とはいえ、ストップアウトを完全に排除するには、まださらなる改良が必要です。私たちの解決策は、それには至らないものの、誰にとっても試す価値のある良い第一歩です。

Gamuchirai Zororo Ndawana
パブリッシュされた記事PythonとMQL5を使用した特徴量エンジニアリング(第3回):価格の角度(2)極座標
PythonとMQL5を使用した特徴量エンジニアリング(第3回):価格の角度(2)極座標

この記事では、あらゆる市場における価格レベルの変化を、それに対応する角度の変化へと変換する2回目の試みをおこないます。今回は、前回よりも数学的に洗練されたアプローチを採用しました。得られた結果は、アプローチを変更した判断が正しかった可能性を示唆しています。本日は、どの市場を分析する場合でも、極座標を用いて価格レベルの変化によって形成される角度を意味のある方法で計算する方法についてご説明します。

Gamuchirai Zororo Ndawana
パブリッシュされた記事MQL5で自己最適化エキスパートアドバイザーを構築する(第5回):自己適応型取引ルール
MQL5で自己最適化エキスパートアドバイザーを構築する(第5回):自己適応型取引ルール

インジケーターを安全に使用する方法を定義したベストプラクティスに従うのは、必ずしも容易ではありません。市場の動きが穏やかな状況では、インジケーターが意図した通りのシグナルを発しないことがあり、その結果、アルゴリズム取引における貴重なチャンスを逃してしまう可能性があります。本稿では、この問題に対する潜在的な解決策として、利用可能な市場データに応じて取引ルールを適応させることが可能な取引アプリケーションの構築方法を提案します。

Gamuchirai Zororo Ndawana
パブリッシュされた記事MQL5で自己最適化エキスパートアドバイザーを構築する(第4回):動的なポジションサイズ調整
MQL5で自己最適化エキスパートアドバイザーを構築する(第4回):動的なポジションサイズ調整

アルゴリズム取引を成功させるには、継続的かつ学際的な学習が必要です。しかし、その可能性は無限であるがゆえに、明確な成果が得られないまま、何年もの努力を費やしてしまうこともあります。こうした課題に対応するため、私たちは徐々に複雑さを導入するフレームワークを提案します。これにより、トレーダーは不確実な結果に対して無限の時間を費やすのではなく、戦略を反復的に洗練させることが可能になります。

Gamuchirai Zororo Ndawana
パブリッシュされた記事MQL5で自己最適化エキスパートアドバイザーを構築する(第3回):ダイナミックトレンドフォローと平均回帰戦略
MQL5で自己最適化エキスパートアドバイザーを構築する(第3回):ダイナミックトレンドフォローと平均回帰戦略

金融市場は一般的に、「レンジ相場」または「トレンド相場」のいずれかに分類されます。このような静的な市場の見方は、短期的な取引においては判断を容易にしてくれるかもしれません。しかし、実際の市場の動きとはかけ離れている側面もあります。この記事では、金融市場がこれら2つのモードをどのように移行するのかを探り、その理解を活かしてアルゴリズム取引戦略への自信をどのように高められるのかを考察します。

Gamuchirai Zororo Ndawana
パブリッシュされた記事古典的な戦略を再構築する(第13回):移動平均線のクロスオーバーにおける遅延の最小化
古典的な戦略を再構築する(第13回):移動平均線のクロスオーバーにおける遅延の最小化

移動平均クロスオーバーは、私たちのコミュニティにおけるトレーダーの間で広く知られている戦略ですが、その基本的な仕組みは誕生以来ほとんど変化していません。本稿では、この戦略に存在する“遅延”を最小限に抑えることを目的とした、わずかながらも重要な改良について紹介します。元の戦略を愛用しているトレーダーの方々にも、今回ご紹介する洞察をもとに、戦略の見直しを検討していただければ幸いです。同一の期間を持つ2つの移動平均を使用することで、戦略の根本的な原則を損なうことなく、遅延を大幅に削減することが可能になります。

Gamuchirai Zororo Ndawana パブリッシュされたプロダクト

プロフェッショナル版エキスパートアドバイザーのご紹介 信頼に基づいて構築され、卓越性を追求して磨き上げられた 2023年9月にオリジナル版エキスパートアドバイザーをリリースした際、私たちの目標はシンプルでした:信頼できる、使いやすい取引ツールを提供し、実際の価値をもたらすこと。以来、世界中の何百人ものトレーダーからのフィードバックを受けて、私たちの無料版は500回以上のダウンロードを達成し、コミュニティから4.5つ星評価を得ています。 私たちは耳を傾け、改良しました。そして今、私たちはプロフェッショナル版を誇りを持ってご紹介します — より強力で機能豊富な新バージョンです。あなたの取引を次のレベルへと引き上げることを目的としています。 プロフェッショナル版の新機能 強化された機能: 世界中のコミュニティのフィードバックを基に、プロフェッショナル版には、取引体験をより効率的で柔軟にするための最もリクエストの多かった機能が追加されています。 パフォーマンスの向上: 新しいバージョンは、先進的な機能と最適化を活用して、取引の実行、戦略の適応性、信頼性を改善しています。

Gamuchirai Zororo Ndawana
Gamuchirai Zororo Ndawana
Day 2:

I want to improve my consistency. I'm skipping days inbetween and I don't like that. Anyway, OOP in MQL5 is better than OOP in Java in my opinion, this chapter was fun. Not all of it made sense, I guess I haven't faced enough problems on my journey to understand why some features in MQL5 are important, but still fun. Page 202 💯
Gamuchirai Zororo Ndawana
Gamuchirai Zororo Ndawana
Day 1: Page mark 171.

I sent Stanislav a friend request today, I wonder if he'll accept it.