Prevedere il futuro con le trasformate di Fourier - pagina 13

 

Eh... ho i miei dubbi... sulle armoniche superiori.

La decomposizione di Fourier è possibile solo per funzioni periodiche.

Ciò significa che se prendiamo un campione di minuti in una settimana, lo scomponiamo in una serie di Fourier e poi sommiamo le armoniche, la funzione risultante sarà periodica.

In altre parole, il nostro grafico è semplicemente duplicato lungo l'asse del tempo nel futuro (e nel passato). Nessuna previsione può essere fatta da esso.

Ecco un'illustrazione

"Una funzione espressa da una serie di Fourier è una funzione periodica, e quindi una serie fatta per una funzione data sull'intervallo [-π, π] converge fuori da questo intervallo ad una continuazione periodica di questa funzione (Fig. 2).

Riferimenti di classe

Serie di Fourier

https://ru.wikipedia.org/wiki/%D0%A0%D1%8F%D0%B4_%D0%A4%D1%83%D1%80%D1%8C%D0%B5
Applet Java per demo di filtri di Fourier e digitali

http://www.falstad.com/fourier/

http://www.falstad.com/dfilter/

 
diakin писал(а) >>

L'espansione in serie di Fourier è possibile solo per funzioni periodiche.

Le conclusioni non sono del tutto corrette. Qualsiasi funzione con uno spettro finito può essere decomposta in una serie di Fourier. E il punto della predizione non è che basta prendere una serie di Fourier, poi sommare il tutto e tornare indietro. Ci sono molte decomposizioni Walsh, Wavelet, ecc. Devi insegnare al programma a selezionare quelle componenti dello spettro che determinano il movimento (la cosiddetta componente utile) tutto il resto è rumore, rimuoverlo (filtrarlo), poi forse qualcosa funzionerà
 
Prival >> :
Non proprio le conclusioni giuste. Qualsiasi funzione con uno spettro limitato può essere decomposta in serie di Fourier. L'essenza della previsione non è semplicemente fare l'espansione della serie, poi sommare il tutto e tornare indietro. Ci sono molte decomposizioni Walsh, Wavelet, ecc. Bisogna insegnare al programma a scegliere quelle componenti dello spettro che determinano il movimento (la cosiddetta componente utile) tutto il resto è rumore, rimuoverlo (filtrarlo), poi si può ottenere qualcosa.

Bene, ditemi, da dove la gente ha preso l'idea che il prezzo si sarebbe mosso su una delle armoniche?

C'è una teoria che prova un tale movimento? Non esiste una tale teoria.

Forse l'esperienza pratica prova un tale movimento? Non ci sono queste prove empiriche?


La gente si lascia trasportare dai mezzi e dimentica l'obiettivo.


E quanta energia e quanto tempo si spende!


Per esempio, il franco ha attaccato il livello 1,1800 per diversi giorni. Stanotte il livello è stato sfondato a 1,1835.

Lasciate che facciano una previsione sull'ulteriore movimento del franco.


Sulla base della teoria empirica V.T.E. posso affermare che il franco andrà sopra 1,1835. E che dire degli amanti della predizione di Fourier?

 
Sart_repair писал(а) >>

Bene, ditemi, da dove la gente ha preso l'idea che il prezzo si sarebbe mosso su una delle armoniche?

C'è una teoria che prova un tale movimento? Non esiste una tale teoria.

Forse l'esperienza pratica prova un tale movimento? Non ci sono queste prove empiriche?

La gente si lascia trasportare dai mezzi e dimentica l'obiettivo.

E quanta energia e quanto tempo si spende!

Chi lo sa? Le ipotesi vengono tirate fuori dal nulla a seconda del livello di immaginazione, ma poi vengono testate, ci sarebbero dei dati - l'argomento sarebbe esaurito.

 
Sart_repair писал(а) >>

Bene, ditemi, da dove la gente ha preso l'idea che il prezzo si sarebbe mosso su una delle armoniche?

C'è una teoria che prova un tale movimento? Non esiste una tale teoria.

Forse l'esperienza pratica prova un tale movimento? Non ci sono queste prove empiriche?

La gente si lascia trasportare dai mezzi e dimentica l'obiettivo.

E quanta energia e quanto tempo si spende!

1. Queste sono le domande giuste. Si può scomporre qualsiasi movimento in più componenti, non uno solo.

2. Proprio la teoria, se ci si addentra profondamente, dice che qualsiasi funzione con uno spettro limitato (che sia il movimento della moneta, del satellite, del suono ecc.) può essere presentata come una serie di Fourier, e c'è una rigorosa prova matematica.

3. L'esperienza pratica dice che "basta saper cucinare" e non per dare un calcio a Fourier, non c'entra assolutamente nulla.

 
Prival >> :

2. Solo la teoria, se si volesse penetrare profondamente in essa, dice che qualsiasi funzione con uno spettro finito (che sia il movimento della moneta, del satellite, del suono, ecc.) può essere rappresentata come una serie di Fourier, e c'è una rigorosa prova matematica di questo.

Bene, c'è la stessa prova per la serie sigmoidea. Tranne che questa stessa prova non ha alcun effetto sulla coerenza dei risultati dell'estrapolazione con i dati reali.

 
Sart_repair >> :

Bene, ditemi, da dove la gente ha preso l'idea che il prezzo si sarebbe mosso su una delle armoniche?

C'è una teoria che prova un tale movimento? Non esiste una tale teoria.

Forse l'esperienza pratica prova un tale movimento? Non ci sono queste prove empiriche?


Ha una laurea in ingegneria o in materie umanistiche, posso chiedere?

 
TheXpert писал(а) >>

Bene, c'è la stessa prova per la serie sigmoidea. Tranne che questa stessa prova non ha alcun effetto sulla coerenza dei risultati dell'estrapolazione con i dati reali.

Giusto, è per questo che sto parlando di abilità culinarie. L'estrapolazione si basa su un'ipotesi circa il/i probabile/i movimento/i. E si può disegnare una curva nel futuro in tutti i modi. Lo si può fare con Fourier, lo si può fare con i polinomi e lo si può fare con le mani.

Pertanto, una persona (algoritmo), quando seleziona queste o quelle componenti spettrali dallo spettro e le predice nel futuro, dà loro (queste componenti) la preferenza, poiché crede che determinerà il movimento futuro. Ma ha ragione? Sulla base di quali ricerche ha scelto la 1, la 3 e la 5 garnetica, ognuna delle quali ha la sua frequenza, ampiezza e fase. O forse avrebbe dovuto scegliere 2, 4 e 6 e modificare la fase? O prendere 256 componenti dello spettro ecc.

L'ipotesi primaria (idea) che dà una statistica sul movimento probabile. Se potete calcolare la probabilità di un ulteriore movimento con Fourier, sarete a posto, altrimenti sarete sfortunati.

Z.U. Fourier funziona dappertutto, i poliziotti ti radarano la luce e la multa, i ricevitori ascoltano tutti, l'uso del cellulare, ecc.

 
sabluk >> :

>> che tipo di educazione è lei, posso chiedere, tecnica o di arti liberali?

Devo anche dirvi con chi vado a letto e che tipo di birra preferisco?

Qual è il suo problema?

 

Sart_repair писал(а) >>


La gente si è lasciata trasportare dal mezzo e ha dimenticato l'obiettivo.


Che spreco di energia e di tempo!


Sart_repair >>:

Puoi anche dirmi con chi vado a letto e che tipo di birra preferisco?

bere più birra, riposare, dormire