Yuriy Bykov / Perfil
- Información
11+ años
experiencia
|
11
productos
|
39
versiones demo
|
3
trabajos
|
3
señales
|
3
suscriptores
|
Пока что мы рассматривали автоматизацию запуска последовательных процедур оптимизации советников исключительно в штатном тестере стратегий. Но что делать, если между такими запусками нам хотелось бы выполнить некоторую обработку уже полученных данных, используя другие средства? Попробуем добавить возможность создания новых этапов оптимизации, выполняемых программами, написанными на Python.
Продолжим автоматизировать шаги, которые ранее мы выполняли вручную. В этот раз вернёмся к автоматизации второго этапа, то есть выбора оптимальной группы одиночных экземпляров торговых стратегий, дополнив его возможностью учитывать результаты экземпляров на форвард-периоде.
Сейчас наш советник использует базу данных для получения строк инициализации одиночных экземпляров торговых стратегий. Однако база данных является достаточно объёмной и содержит много информации, ненужной при реальной работе советника. Попробуем обеспечить работоспособность советника без обязательного подключения к базе данных.
Разрабатываемый советник должен показывать хорошие результаты при торговле у разных брокеров. Но мы пока что для тестов использовали котировки с демо-счёта от MetaQuotes. Посмотрим, готов ли наш советник к работе на торговом счёте с другими котировками по сравнению с теми, которые использовались при тестировании и оптимизации.
Постепенно приближаясь к получению готового советника, необходимо уделить внимание вопросам, которые являются второстепенными на этапе тестирования торговой стратегии, но становятся важными при переходе к реальной торговле.
Разработанный ранее риск-менеджер содержал только базовую функциональность. Попробуем рассмотреть возможные пути его развития, позволяющие повысить торговые результаты без вмешательства в логику торговых стратегий.
Calidad de la tarea técnica | 5.0 | |
Calidad de la verificación de resultados | 5.0 | |
Disponibilidad y habilidades de comunicación | 5.0 |
Первый этап требовал достижения прибыли 8% от начального баланса и занял немногим менее месяца.
Второй этап требовал достижения 5%, но из-за менее удачного периода затянулся почти на два месяца.
Теперь ждем активации Funded-аккаунта, которая занимает, по словам техподдержки, 24 - 48 часов
Первый этап автоматизированного процесса оптимизации у нас уже реализован. Для разных символов и таймфреймов мы проводим оптимизацию по нескольким критериям и сохраняем информацию о результатах каждого прохода в базе данных. Теперь займёмся отбором лучших групп наборов параметров из найденных на первом этапе.
In the EA being developed, we already have a certain mechanism for controlling drawdown. But it is probabilistic in nature, as it is based on the results of testing on historical price data. Therefore, the drawdown can sometimes exceed the maximum expected values (although with a small probability). Let's try to add a mechanism that ensures guaranteed compliance with the specified drawdown level.
To get a good EA, we need to select multiple good sets of parameters of trading strategy instances for it. This can be done manually by running optimization on different symbols and then selecting the best results. But it is better to delegate this work to the program and engage in more productive activities.
The EA development plan includes several stages with intermediate results being saved in the database. They can only be retrieved from there again as strings or numbers, not objects. So we need a way to recreate the desired objects in the EA from the strings read from the database.
Hoy vamos a esbozar los principales pasos para desarrollar nuestro EA. Uno de los primeros será realizar una optimización en una sola instancia de la estrategia comercial desarrollada. Así, intentaremos reunir en un solo lugar toda la información necesaria sobre las pasadas del simulador durante la optimización.
Conforme hemos ido avanzado, hemos utilizado cada vez más instancias simultáneas de estrategias comerciales en un mismo asesor experto. Hoy intentaremos averiguar a cuántas instancias podemos llegar antes de encontrarnos con limitaciones de recursos.
Anteriormente hemos evaluado la selección de un grupo de instancias de estrategias comerciales para mejorar el rendimiento cuando trabajan juntas solo durante el mismo periodo de tiempo en el que se han optimizado las instancias individuales. Veamos qué ocurre en el periodo forward.
Tras optimizar una estrategia comercial, obtendremos conjuntos de parámetros en base a los cuales podremos crear varias instancias (ejemplares) de estrategias comerciales combinadas en un asesor experto. Antes lo hacíamos manualmente, pero ahora trataremos de automatizar el proceso
En las partes anteriores, el Asesor Experto (EA) en desarrollo sólo podía utilizar un tamaño de posición fijo para operar. Esto es aceptable para las pruebas, pero no es aconsejable cuando se opera en una cuenta real. Hagamos posible el comercio utilizando tamaños de posición variables.
https://www.mql5.com/ru/channels/adwizard
https://t.me/adwizard_mql5
Tras empezar a desarrollar un EA multidivisa, ya hemos obtenido algunos resultados y hemos conseguido realizar varias iteraciones de mejora del código. Sin embargo, nuestro EA fue incapaz de trabajar con órdenes pendientes y reanudar la operación después del reinicio del terminal. Añadamos estas características.