Una correlación muestral nula no significa necesariamente que no exista una relación lineal - página 16

 
Privat, te equivocas.
 
¿En qué?
 

El uso de una ventana deslizante es un principio básico del tehanálisis, nadie cuenta nada en todos los datos porque en principio no es realista. Lo mismo ocurre con el DSP.

Su función de autocorrelación muestra varios valores de correlación con diferentes parámetros (desplazamiento de la ventana, longitud de la ventana (o algo así, no entré en detalles)). También utiliza una ventana deslizante. La función dibuja los valores de autocorrelación para un punto de datos, nadie le impide mover la ventana y calcular los valores para cada barra, pero hay que dibujar un gráfico tridimensional.

La definición de autocorrelación puede obtenerse de Yandex. Todo es mucho más sencillo de lo que parece.

No voy a demostrar y argumentar, ya que es inútil, sólo tomar nota.

 
Prival:

¿ESTÁ CLARO?

¿está claro?

Hay una categoría de personas que no impulsan la idea, sino a ellos mismos, muy queridos. Cuanto más delirante es el concepto, más exitoso es el proceso de autopromoción. hrenfx ha ideado algo (muy posiblemente valioso) y esta idea ha llamado a términos ampliamente conocidos y establecidos. Es imposible explicarle que eso no está permitido, porque se está publicitando a sí mismo, y toda la rama no tiene nada que ver con las correlaciones. Hrenfx escribe sobre sí mismo y los demás escribimos sobre la correlación, ¿por qué nos metimos en esto? Sólo porque no se le prohibió a tiempo con la amonestación: "Lee algunos libros".

 
Prival:

1. se toma un trozo de 100 barras y se compara con otro trozo de 100 barras. no hay otra manera. El control de calidad no puede calcularse en matrices de diferentes longitudes.

no parpadee. para los 100.000 bares. Deletréalo ACF es una comparación de BP consigo mismo, no con un trozo de sí mismo. Es con ÉL mismo.

Lo que 100 bares o 100 mil sigue siendo una muestra, no todo el BP. Y aquí, es alguien quien debe decidir qué longitud de muestreo utilizar. El resultado es el mismo: autocorrelación en una muestra, aunque los números pueden ser muy diferentes.

En cuanto a la cabecera, la correlación de la muestra no dice mucho. La correlación es nula sólo para las series estacionarias infinitas independientes, es decir, es una abstracción que no se puede ver en la vida real, pero aún así hay que saberlo.

 
Integer:

La función dibuja los valores de autocorrelación para un punto de datos, nadie impide que se mueva la ventana y se calculen los valores de cada barra, sólo habrá que dibujar un gráfico 3D.

Escribí un script que prepara los datos para Mathcad para su visualización en 3D. Adjunto el script y el archivo de Mathcad.

Este es el aspecto de los cambios del control de calidad para el EURUSD y el GBPUSD desde principios de octubre:

Archivos adjuntos:
 
Integer:

Su función de autocorrelación muestra varios valores de correlación con diferentes parámetros {...}

Esa es la cuestión, no es su función de autocorrelación:-). Existe una definición clara para el ACF.
Sólo estoy de acuerdo en que muestra algo incomprensible :-) /de la falta de práctica en DSP
 
Integer:

El uso de una ventana deslizante es un principio básico del tehanálisis, nadie cuenta nada en todos los datos porque en principio no es realista. Lo mismo ocurre con el DSP.

Su función de autocorrelación muestra varios valores de correlación con diferentes parámetros (desplazamiento de la ventana, longitud de la ventana (o algo así, no entré en detalles)). También utiliza una ventana deslizante. La función dibuja los valores de autocorrelación para un punto de datos, nadie le impide mover la ventana y calcular los valores para cada barra, pero hay que dibujar un gráfico tridimensional.

La definición de autocorrelación puede obtenerse de Yandex. Todo es mucho más sencillo de lo que parece.

No voy a demostrar y argumentar, ya que es inútil, sólo tomar nota.


Entendido.

Aquí hay más detalles, puede que no sea tridimensional, pero es exactamente lo que dice

https://www.mql5.com/ru/forum/105740/page5#50590

estábamos construyendo este ACF.

compostador, Candid, el matemático nos echó un ojo allí más abajo en la rama y lo comprobó a través de FFT . Por supuesto, depende del tamaño de la ventana (muestra) y del desplazamiento

https://www.mql5.com/ru/forum/105740/page16

Si alguien está interesado tiene los indicadores allí.

Dmitry, no soy un asesino de ideas. Estoy en contra del uso de términos que son bien conocidos y sin embargo tienen un significado diferente (otras matemáticas). Así...

no nos entendemos. Al fin y al cabo, la mayoría de las veces es este malentendido la razón por la que ocurre todo.

Piénsalo: creó y escribió un indicador, lo añadió a la base de código y demostró que existe una correlación. Muchas gracias a él. También hice algo similar https://www.mql5.com/ru/forum/107695 la correlación a 24 horas de retraso. Han pasado dos años y esta correlación sigue existiendo. Me he dado cuenta de que en el desglose matutino de los pisos mucha gente utiliza esta idea.

¿Es malo? No, es genial, es perfecto. Pero no se puede poner a todo el mundo en el foro de pasada (incluido Pirson) él es el único que acierta y lo entiende, mientras que todos somos torpes.

Ha acusado a todo el mundo, y por tanto a usted, de no haber calculado nunca el CC, que lo ha codificado mal, y si ha codificado algo, lo ha aplicado mal... Estoy en contra, no se puede hacer así.

Z.U. y estoy muy cabreado. Sólo para poner el matcad (y mostrarme lo que está mal), ayer tumbé Windows 7, pero olvidé que MT5 almacena todo en el disco C por defecto (aunque está en el D)... 4 meses de trabajo, desperdiciados, desformatear no sirvió de nada, y sin copias... ((

 
jartmailru:
Esa es la cuestión, no es su función de autocorrelación :-). Hay una definición clara para el ACF.
Salvo que muestra algo incomprensible :-) /de la falta de práctica en DSP
Pero una definición clara del Coeficiente de Correlación y del ACF no es obstáculo para que existan diferentes fórmulas para su estimación, que darían resultados distintos. Por ejemplo, la definición del coeficiente de correlación de Pearson incluye el operador de expectativa y, en la práctica, todo el mundo lo calcula como la media aritmética de un cierto número de cuentas de una expresión de suboperador. Pero, ¿quién dice que este método es el único correcto? Al fin y al cabo, es, sigo repitiendo, la mejor sólo si asumimos una distribución normal de los errores, lo que es fundamentalmente erróneo en el caso del mercado. Entonces, ¿por qué no tomar en lugar de la media aritmética, por ejemplo, la mediana de los mismos valores? Para una distribución con colas gruesas, esta estimación es definitivamente más eficiente. La fórmula del QC de Pearson sería más complicada (y también no lineal), pero seguiría siendo el QC de Pearson, o más bien una de sus posibles estimaciones.
 
Prival:

Nada, todo será restaurado, y cien veces mejor). En general, de vez en cuando practico una demolición completa del terminal con la eliminación de todos mis programas escritos. Por lo general, cuando hay una nueva idea y es necesario deshacerse de los huskies. Pero lo archivo todo de antemano, por supuesto) Y si tengo algo valioso y útil en el archivo antiguo, no tardaré en sacarlo cuando lo necesite.