[Archive!] Pure mathematics, physics, chemistry, etc.: brain-training problems not related to trade in any way - page 240

 
rustein писал(а) >>

https://www.mql5.com/go?link=http://www.membrana.ru/articles/technic/2010/02/26/194200.html

Уважаемый Richie какое Ваше мнение, и как Вы думаете, какой следующий ход?

Спасибо.

Fuel cells (FC) are nothing new, they have existed for a long time. They can run on natural gas and hydrogen, and even on liquid fuel.
Here is what follows:
1. Increase efficiency of fuel cells;
2. Increase in specific power of fuel cells (power-to-mass ratio);
3. Increase of power capacity (creation of TE up to several GW);
4. Reduction of specific heat cost;
5. Increase of durability (up to 25-40 years);

There is one more problem to be solved by scientists - the problem of fuel itself.
When methane is 'burned' in a fuel cell, CO2 is produced. Pure hydrogen turns out to be the best fuel. But where to get it? There is no good source of hydrogen yet. Storage of hydrogen, especially for cars is also a problem: hydrogen is very light, compresses badly, doesn't liquefy at normal temperature (like propane-butane, for example). So, another next step is (6) to solve the problems of hydrogen production and storage.
Another promising direction is (7) the creation of compact TE, with sizes from fractions of cubic cm to several hundred cubic cm.

-

By the way, about hydrogen, if somebody of traders present here will invent the method of hydrogen storage in which in a tank of 50-60 litres (average volume of a gas tank of a car) you can pump 15-30 kg of hydrogen at technically acceptable pressure (up to 100 atm), then probably this person will be able to become very rich. So, think about it :)

 
Richie >>:

Топливные элементы (ТЭ) - не новость, они существуют давно. Могут работать и на природном газе и на водороде и даже на жидком топливе.
Дальше будет следующее:
1. Повышение КПД ТЭ;
2. Повышение удельной мощности ТЭ (отношение мощности к массе);
3. Повышение мощности (создание ТЭ мощностью до нескольких ГВт);
4. Снижение удельной стоимости ТЭ;
5. Повышение долговечности (до 25-40 лет);

Есть ещё одна проблема, которую предстоит решить учёным - проблема самого топлива.
При "сжигании" в ТЭ метана образуется CO2. Самым лучшим топливом оказывается - чистый водород. Но, где его брать? Пока хорошего источника водорода нет. С хранением водорода, особенно для автомобилей - тоже проблема: водород очень лёгкий, сжимается плохо, при нормальной температуре не сжижается (например, как пропан-бутан). Так, что ещё один следующий шаг - (6) решение проблем получения и хранения водорода.
Ещё одно перспективное направление - (7) создание компактных ТЭ, с размерами от долей куб.см до нескольких сотен куб.см.

-

Кстати, на счёт водорода, если кто-то из здесь-присутствующих трейдеров изобретёт способ хранения водорода, при котором в ёмкость(баллон) объёмом 50-60 литров (средний объём бензобака легкового автомобиля) можно закачать 15-30 кг водорода, при технически-приёмлемом давлении (до 100 атм), то вероятно этот человек сможет стать очень богатым. Так, что подумайте :)

1. hydrogen is perfectly compressible.

2. Liquid hydrogen is really a pain in the ass, the critical point is 33 Kelvin, above this temperature there is no liquid hydrogen.

3. With storage of LH on the one hand it is easier, on the other the opposite is true. The problem (and advantage) is the small size of the molecules, as a result of which LHW roughly "seeps" through most structural materials. Due to this, there is also a way to store in tanks with a "spongy" structure, which reduces the mechanical strength requirements.

3. The density of hydrogen at NU is 0.09g/l, or 9g/l at a given 100 atm, or 540g in a 60 litre cylinder at 100 atm. So a very rich person must first invent a "molecular archiver".

 
vegetate писал(а) >>

1. hydrogen is perfectly compressible.

2. Liquid hydrogen is really a pain in the ass, the critical point is 33 Kelvin, above this temperature there is no liquid hydrogen.

3. Storage of LH is easier on the one hand and the opposite on the other. The problem (and advantage) is the small size of the molecules, as a result of which LP roughly "seeps" through most structural materials. Due to this, there is also a way of storage in tanks with "sponge" structure, which reduces the requirements for mechanical strength.

3. Hydrogen density at LH is 0.09g/l, or 9g/l at a given 100 atm, or 540g in a 60 litre cylinder at 100 atm. So a very rich person must first invent the "molecular archiver".

Apparently the solution to the problem of compressed hydrogen is in the area of dissolving hydrogen in something. Think back to what was done with acetylene. Acetylene cannot be stored at pressures above 3 atmospheres at all, it can explode on its own. That is why we decided to "dissolve" it in acetone. However, even in a 40-liter acetone tank there is only 4-7 kg of acetylene. Here, too, we need to find a solvent for hydrogen. And of course it doesn't have to be expensive palladium or something even more expensive.

 

The problem is not that it can explode. The problem is that at about 13atm, the hydrogen is already in a supercritical state, ready to dissolve anything.

I was wrong about the mass in the tank, by the way. Considering already about 2kg of hydrogen in such cylinder. The only thing is to keep it in there.

But progress is not standing still, it is a question of new materials.

 
Richie >>:

Топливные элементы (ТЭ) - не новость, они существуют давно. Могут работать и на природном газе и на водороде и даже на жидком топливе.
Дальше будет следующее:
1. Повышение КПД ТЭ;
2. Повышение удельной мощности ТЭ (отношение мощности к массе);
3. Повышение мощности (создание ТЭ мощностью до нескольких ГВт);
4. Снижение удельной стоимости ТЭ;
5. Повышение долговечности (до 25-40 лет);

Есть ещё одна проблема, которую предстоит решить учёным - проблема самого топлива.
При "сжигании" в ТЭ метана образуется CO2. Самым лучшим топливом оказывается - чистый водород. Но, где его брать? Пока хорошего источника водорода нет. С хранением водорода, особенно для автомобилей - тоже проблема: водород очень лёгкий, сжимается плохо, при нормальной температуре не сжижается (например, как пропан-бутан). Так, что ещё один следующий шаг - (6) решение проблем получения и хранения водорода.
Ещё одно перспективное направление - (7) создание компактных ТЭ, с размерами от долей куб.см до нескольких сотен куб.см.

-

Кстати, на счёт водорода, если кто-то из здесь-присутствующих трейдеров изобретёт способ хранения водорода, при котором в ёмкость(баллон) объёмом 50-60 литров (средний объём бензобака легкового автомобиля) можно закачать 15-30 кг водорода, при технически-приемлемом давлении (до 100 атм), то вероятно этот человек сможет стать очень богатым. Так, что подумайте :)

Thank you.

The optimisation of these technologies seems to be going very slowly. It is very interesting to know your opinion if a drastic breakthrough in power generation and distribution is possible and in which technologies it could happen.

I follow the news with great interest, but have little understanding of physics.

 
rustein писал(а) >>

It is very interesting to know your opinion if a major breakthrough in power generation and distribution is possible, and in what technologies it is possible to happen.

There are 4 important issues that remain unresolved:

-
1. Fusion power generation;
2. Electricity transmission with low losses - high temperature superconductivity;
3. Accumulation of large amounts of electricity;
4. Electricity market;

-
Solving these 4 problems is the electric power industry's dramatic breakthroughs. When this will happen depends largely on the amount of money the government will allocate to it.

-
Thermonuclear reactors already exist, but it's too early to talk about industrial energy production. If the fusion problem is solved, all boiler plants, chemical-fueled cogeneration plants and uranium-fueled nuclear power plants will be a thing of the past. Hydropower plants are likely to remain.
-
It has not yet been possible to develop a cheap superconductor for the power industry. So far, most of the power is transmitted through steel-aluminum and aluminum wires, with a small portion of low-voltage power transmitted through copper wires. We lose about a quarter of all electricity generated in transmission alone, which is a lot.
-
Energy storage is also a problem. There are almost no storage power plants. But they are very useful for the energy sector.
-
We don't have a market for electricity. I know an executive who tried to buy a multi-megawatt gas turbine generator for his plant so as not to depend on electricity prices. But they figured it out: gas turned out to be expensive. And this is in our country.
-
More breakthroughs are possible in the fields of electricity transformation, switching and lighting:
-
Power transformers are likely to become high-frequency and semiconductor transformers with a variable transformer ratio in the near future. These are still under development. Samples are very expensive.
-
There are no solid-state high-voltage circuit breakers yet. Matemat recently posted a video of a 500 kV disconnector tripping, so that's what I'm talking about. There are simply no semiconductor circuit breakers for 20-750 kV. Nor are there 6-10 kV circuit breakers similar to 0.4 kV circuit breakers.
-
As for electric lighting - there could also be a dramatic breakthrough - the invention of a long-life lamp with very high efficiency, affordable, high quality light. So far, the zeitgeist - LED lamps are lagging far behind.

 

Imho, now is the time to invest in solar energy conversion and next-generation engines.

By the way, new wind turbines are also a theme.

_________________________________

About energy and light. The solution to energy storage is automatically solved by solving the hydrogen problem.

LEDs rule, but they are too expensive. By the way, there is now mixed light technology, which uses fibre optics to transmit light into a building with very little loss.

 
Richie >>:

Термоядерные реакторы уже есть

Can you go into more detail here? Aren't you talking about the cold fusion, which has made a lot of noise?

Power transformers are likely to become high-frequency and semiconductor with a variable transformer ratio in the near future.

Well that's some nonsense, sorry. What about the remagnetisation losses? Or would it be different there?

 
Mathemat писал(а) >>

Could you go into more detail here? Aren't you talking about the cold fusion, which made a lot of noise?

Well, that's a load of crap, I'm sorry. What about the remagnetization losses? Or would it be different there?

1. No, not about cold. But I'm sure a cold one will be developed sooner or later too. By the way, in chemistry not everything is solved by temperature, sometimes chemists indulge in high pressure, e.g. when getting high pressure polyethylene, ammonia, manufacturing of artificial diamonds. So, there is bound to be an approach. Another favourite pastime of chemists are catalysts. They can do things that are hard to imagine without them. I personally believe in the future of cold CU.

-

2. You have misunderstood me, I meant something else. Think back to the old Soviet TV boxes. What kind of transformers were there? If you drop such a transformer on the leg, you can't avoid a fracture :) How do you solve the problem? They built a high frequency transformer. Take your TV apart, see what it looks like - three matchboxes, figuratively speaking. And anyway, who says it has to be the magnetic type? It can also be of the static type - on a capacitor. What do modern power supplies and chargers look like? Also small.

Another example: compare the choke of a fluorescent luminaire and an ECG and feel the difference in size. Magnetic and electronic type transformers for 12V halogen lamps are also very different. Compare a TDM type welding transformer and some modern welding inverter, with similar parameters.

When I said the transformer would be high frequency, I didn't mean to increase the frequency in the mains, I meant transformation. It should not be ruled out that transformers in the future will become optical, LED-solar battery type. And the network will most likely carry direct current at all.

Now think about it: a 750 kV transformer. The 1st part - the active part - a special train platform, for it weighs about 1000 tons.

A few more cars - cooling radiators, fans, high and medium voltage inlets, automation, a couple of oil tanks in the back. Half a year for installation and commissioning, etc. That's the kind of energy we have.

 
Richie >>: И вообще, кто сказал, что он должен быть магнитного типа? Он может быть и статического типа - на конденсаторе. А как выглядят современные блоки питания, зарядники? Тоже маленькие.

Do you know why they're so small? Because there's no transaxle.

Yes, the device itself becomes lighter, but here's the rub: as the power supply is capacitive, it severely corrupts the input network and is extremely inconvenient for the mains supply. And now they are trying to get rid of it by reducing the interference in the input network. Fucking ecology...

I've seen the current on the input of a computer power supply. Very bad, not much like a sine wave. I doubt that's the future.

And in general we have deviated a lot from pure mathematics :)