Modify center of gravity to show the reverse center

 
#property indicator_chart_window
#property indicator_buffers 5
//#property indicator_color1 White
#property indicator_color1 Black
//#property indicator_color2 RoyalBlue  
#property indicator_color2 White  
#property indicator_color3 White 
#property indicator_color4 Goldenrod 
#property indicator_color5 Goldenrod  
//-----------------------------------
extern int bars_back = 200;
extern double m = 2;
extern int i = 0;
extern double kstd = 2;
extern int sName = 1102;
//----------------------
double fx[], sqh[], sql[], stdh[], stdl[];
double ai[10,10], b[10], x[10], sx[20];
double sum;
int    ip, p, n, f;
double qq, mm, tt;
int    ii, jj, kk, ll, nn;
double sq, std;
//*******************************************
int init()
{
   IndicatorShortName("Center of Gravity");
   //SetIndexStyle(0, DRAW_LINE, EMPTY,1, indicator_color1);
   SetIndexStyle(1, DRAW_LINE, EMPTY,2, indicator_color2);
   SetIndexStyle(2, DRAW_LINE, EMPTY,2, indicator_color3);
   SetIndexStyle(3, DRAW_LINE, EMPTY,2, indicator_color4);
   SetIndexStyle(4, DRAW_LINE, EMPTY,2, indicator_color5);

   SetIndexBuffer(0, fx);
   SetIndexBuffer(1, sqh);
   SetIndexBuffer(2, sql);
   SetIndexBuffer(3, stdh);
   SetIndexBuffer(4, stdl);
   p = MathRound(bars_back);
   nn = m + 1;
   ObjectCreate("pr" + sName, 22, 0, Time[p], fx[p]);
   ObjectSet("pr" + sName, 14, 159);
   return(0);
}
//----------------------------------------------------------
int deinit()
{
   ObjectDelete("pr" + sName);
}
//**********************************************************************************************
int start()
{
   int mi;
//-------------------------------------------------------------------------------------------
   ip = iBarShift(Symbol(), Period(), ObjectGet("pr" + sName, OBJPROP_TIME1));
   p = bars_back; 
   sx[1] = p + 1;
   SetIndexDrawBegin(0, Bars - p - 1);
   SetIndexDrawBegin(1, Bars - p - 1);
   SetIndexDrawBegin(2, Bars - p - 1);
   SetIndexDrawBegin(3, Bars - p - 1);
   SetIndexDrawBegin(4, Bars - p - 1); 
//----------------------sx-------------------------------------------------------------------
   for(mi = 1; mi <= nn * 2 - 2; mi++)
   {
      sum = 0;
      for(n = i; n <= i + p; n++)
      {
         sum += MathPow(n, mi);
      }
      sx[mi + 1] = sum;
   }  
//----------------------syx-----------
   for(mi = 1; mi <= nn; mi++)
   {
      sum = 0.00000;
      for(n = i; n <= i + p; n++)
      {
         if(mi == 1)
            sum += Close[n];
         else
            sum += Close[n] * MathPow(n, mi - 1);
      }
      b[mi] = sum;
   } 
//===============Matrix=======================================================================================================
   for(jj = 1; jj <= nn; jj++)
   {
      for(ii = 1; ii <= nn; ii++)
      {
         kk = ii + jj - 1;
         ai[ii, jj] = sx[kk];
      }
   }  
//===============Gauss========================================================================================================
   for(kk = 1; kk <= nn - 1; kk++)
   {
      ll = 0; mm = 0;
      for(ii = kk; ii <= nn; ii++)
      {
         if(MathAbs(ai[ii, kk]) > mm)
         {
            mm = MathAbs(ai[ii, kk]);
            ll = ii;
         }
      }
      if(ll == 0)
         return(0);   

      if(ll != kk)
      {
         for(jj = 1; jj <= nn; jj++)
         {
            tt = ai[kk, jj];
            ai[kk, jj] = ai[ll, jj];
            ai[ll, jj] = tt;
         }
         tt = b[kk]; b[kk] = b[ll]; b[ll] = tt;
      }  
      for(ii = kk + 1; ii <= nn; ii++)
      {
         qq = ai[ii, kk] / ai[kk, kk];
         for(jj = 1; jj <= nn; jj++)
         {
            if(jj == kk)
               ai[ii, jj] = 0;
            else
               ai[ii, jj] = ai[ii, jj] - qq * ai[kk, jj];
         }
         b[ii] = b[ii] - qq * b[kk];
      }
   }  
   x[nn] = b[nn] / ai[nn, nn];
   for(ii = nn - 1; ii >= 1; ii--)
   {
      tt = 0;
      for(jj = 1; jj <= nn - ii; jj++)
      {
         tt = tt + ai[ii, ii + jj] * x[ii + jj];
         x[ii] = (1 / ai[ii, ii]) * (b[ii] - tt);
      }
   } 
//===========================================================================================================================
   for(n = i; n <= i + p; n++)
   {
      sum = 0;
      for(kk = 1; kk <= m; kk++)
      {
         sum += x[kk + 1] * MathPow(n, kk);
      }
      fx[n] = x[1] + sum;
   } 
//-----------------------------------Std-----------------------------------------------------------------------------------
   sq = 0.0;
   for(n = i; n <= i + p; n++)
   {
      sq += MathPow(Close[n] - fx[n], 2);
   }
   sq = MathSqrt(sq / (p + 1)) * kstd;
   std = iStdDev(NULL, 0, p, MODE_SMA, 0, PRICE_CLOSE, i) * kstd;
   for(n = i; n <= i + p; n++)
   {
      sqh[n] = fx[n] + sq;
      sql[n] = fx[n] - sq;
      stdh[n] = fx[n] + std;
      stdl[n] = fx[n] - std;
   } 
//-------------------------------------------------------------------------------
   ObjectMove("pr" + sName, 0, Time[p], fx[p]);
//----------------------------------------------------------------------------------------------------------------------------
   return(0);
}
//==========================================================================================================================   

this will give me this result 

original

But I would like some help to make it looks like this:

modified

The blue line is the inverse of the center of gravity, can somebody help to make it show the inverse band?

 
Otavio Barreto: can somebody help to make it show the inverse band?
  1. Your version is a repainting version — useless for trading.
  2. Until you can define concretely what you mean by "inverse band" no one can help you. The COG is x[1] + x[2] 2 + x[3] 3
  3. Help you with what? You haven't stated a problem, you stated a want. Show us your attempt (using the CODE button) and state the nature of your problem.
              No free help

    Or pay someone. Top of every page is the link Freelance.
              Hiring to write script - General - MQL5 programming forum

See also: Polynomial Regression Channel (PRC) == Center Of Gravity (COG)
          Fitting a parabola - MQL4 programming forum Not John Ehlers' Center of Gravity oscillator.