AI 2023. Встречайте ChatGPT. - страница 218

 

Когда знакомишься с промышленностью и видишь как реально работают машины, станки и операторы, масковские иллюзии быстро улетучиваются. Но это так... к слову.

Далее немного фотографий предприятий горной промышленности снаружи и изнутри:


 

Вот фотографии процессов добычи полезных ископаемых:


 

Немного статистики:


 

Данных о горный промышленности в интернете и много и мало - они наверняка есть, но где - трудно сказать. Возможно есть ресурсы где эти данные упорядочены и предствлены ясно и целостно, но для общего понимания этого достаточно. Далее перейдем к металлургии.

Смысл этой презентации в том чтобы увидеть:

1. Реальный мир.

2. Реальное производство.

3. Реальную технику.

4. Реальную экономику.

5. Реальный потенциал развития.

 
Ау, есть тут кто нибудь?
Вот же были времена, заходишь с утра в ветку - почитал свежую подборку новостей из википедии и полон сил на весь день....
 

Продолжим знакомиться с промышленностями. Осталось еще шесть. Сегодня посмотрим на металлургию.

Напомню в чем смысл: окончательно избавить рассудок от голливудских фантасмагорий и бредовых представлений о технологиях.

Проснуться, короче.

 

Металлургия (Википедия)

(текст отредактирован мною для удобства чтения)

(от др.-греч. μεταλλουργέω — добываю руду, обрабатываю металлы) — область науки и техники, охватывающая процессы получения металлов из руд или других видов сырья, а также процессы, связанные с изменением химического состава, структуры и свойств металлических сплавов и производством разнообразных металлических изделий из них. В первоначальном, узком значении — искусство извлечения металлов из руд. В настоящее время металлургия является также отраслью промышленности.


Структурные свойства металлических материалов в зависимости от их состава и способов обработки изучаются в рамках металловедения.

К металлургии относятся:

  • производство металлов из природного сырья и других металлосодержащих продуктов;
  • получение сплавов;
  • обработка металлов в горячем и холодном состоянии;
  • сварка;
  • нанесение покрытий из металлов;
  • область материаловедения, изучающая физическое и химическое поведение металлов, интерметаллидов и сплавов.

К металлургии примыкает разработка, производство и эксплуатация машин, аппаратов, агрегатов, используемых в металлургической промышленности. На условной границе между металлургией и горным делом находятся процессы окускования (подготовка обогащённого сырья к дальнейшей пирометаллургической переработке). С точки зрения академической науки их относят к металлургическим дисциплинам. С металлургией тесно связаны коксохимия, производство огнеупорных материалов, и химия (когда речь идёт о металлургии редкоземельных металлов, например).


Разновидности металлургии

В мировой практике исторически сложилось деление металлов на чёрные (железо, марганец, хром и сплавы на их основе) и все остальные — нечёрные (англ. Non-ferrous metals) или цветные металлы. Соответственно, металлургия часто подразделяется на чёрную и цветную.

Чёрная металлургия включает добычу и обогащение руд чёрных металлов, производство чугуна, стали и ферросплавов. К чёрной металлургии относят также производство проката чёрных металлов, стальных, чугунных и других изделий из чёрных металлов.

К цветной металлургии относят добычу, обогащение руд цветных металлов, производство цветных металлов и их сплавов. По физическим свойствам и назначению цветные металлы условно делят на тяжёлые (медь, свинец, цинк, олово, никель) и лёгкие (алюминий, титан, магний).

По основному технологическому процессу металлургия подразделяется на пирометаллургию и гидрометаллургию.

Пирометаллургия (от др.-греч. πῦρ «огонь») — металлургические процессы, протекающие при высоких температурах (обжиг, плавка и т. п.). Разновидностью пирометаллургии является плазменная металлургия.

Гидрометаллургия (от др.-греч. ὕδωρ «вода») — процесс извлечения металлов из руд, концентратов и отходов различных производств при помощи воды и различных водных растворов химических реактивов (выщелачивание) с последующим выделением металлов из растворов (например, цементацией, электролизом).

Во многих странах мира идёт интенсивный научный поиск по применению различных микроорганизмов в металлургии, то есть применение биотехнологии (биовыщелачивание, биоокисление, биосорбция, биоосаждение и очистка растворов). К настоящему времени наибольшее применение биотехнические процессы нашли для извлечения таких цветных металлов, как медь, золото, цинк, уран, никель из сульфидного сырья. Особое значение имеет реальная возможность использования методов биотехнологии для глубокой очистки сточных вод металлургических производств[6].


Производство и потребление металлов

Распространение и сферы применения

Из наиболее ценных и важных для современной техники металлов лишь немногие содержатся в земной коре в больших количествах: алюминий (8,9 %), железо (4,65 %), магний (2,1 %), титан (0,63 %). Природные ресурсы некоторых весьма важных металлов измеряются сотыми и даже тысячными долями процента. Особенно бедна природа благородными и редкими металлами.

Производство и потребление металлов в мире постоянно растёт. С середины 1980-х по середну 2000-х годов ежегодное мировое потребление металлов и мировой металлофонд удвоились и составляют, соответственно, около 800 млн тонн и около 8 млрд тонн. Изготовленная с использованием чёрных и цветных металлов доля продукции в настоящее время составляет 72—74 % валового национального продукта государств. Металлы в XXI веке остаются основными конструкционными материалами, так как по своим свойствам, экономичности производства и потребления не имеют себе равных в большинстве сфер применения[6].

Из 800 млн т ежегодно потребляемых металлов более 90 % (750 млн т) приходится на сталь, около 3 % (20—22 млн т) на алюминий, 1,5 % (8—10 млн т) — медь, 5—6 млн т — цинк, 4—5 млн т — свинец (остальные — менее 1 млн т).

Масштабы производства таких цветных металлов, как алюминий, медь, цинк, свинец, измеряются в млн т/год; таких как магний, титан, никель, кобальт, молибден, вольфрам — в тыс. т, таких как селен, теллур, золото, платина — в тоннах, таких как иридий, осмий и т. п. — в килограммах[6].

В настоящее время основная масса металлов производится и потребляется в таких странах как США, Япония, Китай, Россия, Германия, Украина, Франция, Италия, Великобритания и другие.

Благодаря своим физическим свойствам (твёрдость, высокая плотность, температура плавления, теплопроводность, электропроводность, звукопроводность, внешний вид и другим) они находят применение в различных областях.


Применение металлов зависит от их индивидуальных свойств:

железо и сталь обладают твёрдостью и прочностью. Благодаря этим их свойствам они широко используются в строительстве;

алюминий ковок, хорошо проводит тепло, обладает высокой прочностью при сверхнизких температурах. Он используется для изготовления кастрюль и фольги, в криогенной технике. Благодаря своей низкой плотности — при изготовлении частей самолётов;

медь обладает пластичностью и высокой тепло- и электропроводностью. Именно поэтому она нашла своё широкое применение в производстве электрических кабелей и энергетическом машиностроении;

золото и серебро очень тягучи, вязки и химически инертны, обладают высокой стоимостью, используются в ювелирном деле. Золото также используется для изготовления неокисляемых электрических соединений.


Сплавы и их применение

В чистом виде металлы применяются незначительно. Гораздо большее применение находят сплавы металлов, так как они обладают особыми индивидуальными свойствами. Наиболее часто используются сплавы алюминия, хрома, меди, железа, магния, никеля, титана и цинка. Много усилий было уделено изучению сплавов железа и углерода. Обычная углеродистая сталь используется для создания дешёвых, высокопрочных изделий, когда вес и коррозия не критичны.

Нержавеющая или оцинкованная сталь используется, когда важно сопротивление коррозии. Алюминиевые и магниевые сплавы используются, когда требуются прочность и лёгкость.

Медно-никелевые сплавы (такие, как монель-металл) используются в коррозионно-агрессивных средах и для изготовления ненамагничиваемых изделий.

Суперсплавы на основе никеля (например, инконель) используются при высоких температурах (турбонагнетатели, теплообменники и т. п.).

При очень высоких температурах используются монокристаллические сплавы.


Добывающая металлургия

Добывающая металлургия заключается в извлечении ценных металлов из руды и подготовке извлечённого сырья для дальнейшего передела.

Для того, чтобы превратить оксид или сульфид металла в чистый металл, руда должна быть обогащена физическим, химическим, оптическим или электролитическим способом.

Масштабы переработки руд в мире огромны. Только на территории СССР в конце 1980-х — начале 1990-х годов ежегодно добывалось и подвергалось обогащению более 1 млрд тонн руды.

Металлурги работают с двумя основными составляющими:

  • сырьём (руда или окускованный промпродукт и добавки в виде флюсов и легирующих материалов) 
  • отходами 

Горные работы не обязательны, если руда и окружающая среда позволяют провести выщелачивание. Таким путём можно растворить минерал и получить обогащённый минералом раствор. Зачастую руда содержит несколько ценных металлов. В таком случае отходы одного процесса могут быть использованы в качестве сырья для другого процесса.


Чёрная металлургия

Железо в природе находится в руде в виде оксидов Fe3O4, Fe2O3, гидроксида Fe2O3×H2O, карбонатов FeCO3 и других. Поэтому для восстановления железа и получения сплавов на его основе существует несколько стадий, включающих:

  • подготовку сырья к доменной плавке (окускование) 
  • доменное производство 
  • производство стали.

Доменное производство чугуна

На первой стадии получения железосодержащих сплавов происходит высвобождение железа из руды или окускованного сырья в доменной печи при температуре свыше 1000 °C и выплавка чугуна. Свойства получаемого чугуна зависят от хода процесса в доменной печи. Поэтому, задавая процесс восстановления железа в доменной печи, можно получить два вида чугуна:

  • передельный, который идёт в дальнейший передел для выплавки стали
  • литейный чугун, из которого получают чугунные отливки.


Производство стали

Передельный чугун служит для производства стали. Сталь — это сплав железа с углеродом и легирующими элементами. Она прочнее чугуна и более пригодна для строительных конструкций и производства деталей машин. Выплавка стали происходит в сталеплавильных печах, где металл находится в жидком состоянии.

Существует несколько методов получения стали.

Основными методами получения стали являются:

  • кислородно-конверторный
  • мартеновский
  • электроплавильный


Каждый метод использует различное оборудование:

  • конвертеры
  • мартеновские печи
  • индукционные печи
  • дуговые печи.


Кислородно-конвертерный процесс

Первым способом массового производства жидкой стали был бессемеровский процесс. Этот способ производства стали в конвертере с кислой футеровкой был разработан англичанином Г. Бессемером в 1856—1860 годах. В 1878 году С. Томасом был разработан схожий процесс в конвертере с основной футеровкой, получивший название томасовский процесс. Сущность конвертерных процессов (бессемеровского и томасовского) на воздушном дутье заключается в том, что залитый в плавильный агрегат (конвертер) чугун продувают снизу воздухом: содержащийся в воздухе кислород окисляет примеси чугуна, в результате чего он превращается в сталь. При томасовском процессе, кроме того, в основной шлак удаляются фосфор и сера. При окислении выделяется тепло, которое обеспечивает нагрев стали до температуры около 1600 °С.


Мартеновский процесс

Сущность другого способа получения стали с помощью мартеновского процесса заключается в ведении плавки на поду пламенной отражательной печи, которая оборудована регенераторами для предварительного подогрева воздуха (иногда и газа). Идея получения литой стали на поду отражательной печи высказывалась многими учеными (например, в 1722 году Реомюром), однако осуществить это долгое время не удавалось, так как температура факела обычного в то время топлива — генераторного газа — была недостаточной для получения жидкой стали. В 1856 году братья Сименс предложили использовать для подогрева воздуха тепло горячих отходящих газов, устанавливая для этого регенераторы. Принцип регенерации тепла был использован Пьером Мартеном для плавки стали. Началом существования мартеновского процесса можно считать 8 апреля 1864 года, когда П. Мартен на одном из заводов Франции выпустил первую плавку.

Для выплавки стали в мартеновскую печь загружают шихту, состоящую из чугуна, скрапа, металлического лома и других компонентов. Под действием тепла от факела сжигаемого топлива шихта постепенно плавится. После расплавления в ванну вводят различные добавки для получения металла заданного состава и температуры. Готовый металл из печи выпускают в ковши и разливают. Благодаря своим качествам и невысокой стоимости мартеновская сталь нашла широкое применение. Уже в начале XX века в мартеновских печах выплавляли половину общего мирового производства стали.

Первая мартеновская печь в России была построена в Калужской губернии на Ивано-Сергиевском железоделательном заводе С. И. Мальцевым в 1866—1867 годах. В 1870 году первые плавки проведены в печи вместимостью 2,5 т, построенной известными металлургами А. А. Износковым и Н. Н. Кузнецовым на Сормовском заводе. По образцу этой печи позже на других русских заводах были построены аналогичные печи большей вместимости. Мартеновский процесс стал основным в отечественной металлургии. Огромную роль сыграли мартеновские печи в годы Великой Отечественной войны. Советским металлургам на Магнитогорском и Кузнецком металлургических комбинатах впервые в мировой практике удалось удвоить садку мартеновских печей без существенной их перестройки, организовав производство высококачественной стали (броневой, подшипниковой и т. п.) на действовавших в то время мартеновских печах. В настоящее время в связи с расширением конвертерного и электросталеплавильного производства стали масштабы производства мартеновской стали сокращаются.

В основной мартеновской печи можно переплавлять чугун и скрап любого состава и в любой пропорции и получать при этом качественную сталь любого состава (кроме высоколегированных сталей и сплавов, которые получают в электропечах). Состав применяемой металлической шихты зависит от состава чугуна и скрапа и от расхода чугуна и скрапа на 1 т стали. Соотношение между расходом чугуна и скрапа зависит от многих условий.


Электросталеплавильное производство

В настоящее время для массовой выплавки стали применяют дуговые сталеплавильные электропечи, питаемые переменным током, индукционные печи и получающие распространение в последние годы дуговые печи постоянного тока. Причём доля печей последних двух видов в общем объёме выплавки невелика.

В дуговых электропечах переменного тока выплавляют стали электропечного сортамента. Основным достоинством дуговых электропечей является то, что в них в течение многих десятилетий выплавляют основную часть высококачественных легированных и высоколегированных сталей, которые затруднительно либо невозможно выплавлять в конвертерах и мартеновских печах. Благодаря возможности быстро нагреть металл, можно вводить большие количества легирующих добавок и иметь в печи восстановительную атмосферу и безокислительные шлаки (в восстановительный период плавки), что обеспечивает малый угар вводимых в печь легирующих элементов. Кроме того, имеется возможность более полно, чем в других печах, раскислять металл, получая его с более низким содержанием оксидных неметаллических включений, а также получать сталь с более низким содержанием серы в связи с её хорошим удалением в безокислительный шлак. Также есть возможность плавно и точно регулировать температуру металла.


Легирование стали

Для придания стали разнообразных свойств используется процесс легирования стали. Легирование — это процесс изменения состава сплавов путём введения определённых концентраций дополнительных элементов. В зависимости от их состава и концентрации изменяется состав и свойства сплава. Основные легирующие элементы для стали являются: хром (Cr), никель(Ni), марганец (Mn), кремний (Si), молибден (Mo), ванадий (V), бор (B), вольфрам (W), титан (Ti), алюминий (Al), медь (Cu), ниобий (Nb), кобальт (Co). В настоящее время существует большое количество марок стали с различными легирующими элементами.


Порошковая металлургия

Принципиально иным способом производства сплавов на основе черных металлов является порошковая металлургия. Порошковая металлургия основана на применении порошков металлов с размерами частиц от 0,1 мкм до 0,5 мм, которые сначала спрессовываются, а затем спекаются.


Цветная металлургия

В цветной металлургии применяются очень разнообразные методы производства цветных металлов. Многие металлы получают пирометаллургическим способом с проведением избирательной восстановительной или окислительной плавки, где часто в качестве источника тепла и химического реагента используют серу, содержащуюся в рудах. Вместе с тем ряд металлов с успехом получают гидрометаллургическим способом с переводом их в растворимые соединения и последующим выщелачиванием.

Часто оказывается наиболее приемлемым электролитический процесс водных растворов или расплавленных сред.

Иногда применяют металлотермические процессы, используя в качестве восстановителей производимых металлов другие металлы с большим сродством к кислороду. Можно указать ещё на такие способы, как химико-термический, цианирование и хлорид-возгонка.


Производство меди

Cхема медерафинировочного производства (на примере медеплавильного цеха Уралэлектромедь)

1 — черновая медь

2 — плавление

3 — отражательная печь

4 — съём шлака

5 — разлив меди в аноды

6 — разливочная машина карусельного типа

7 — анодосъёмная машина

8 — съём анодов

9 — вагонетки

10 — транспортировка в цех электролиза

Известны два способа извлечения меди из руд и концентратов: гидрометаллургический и пирометаллургический.

Гидрометаллургический способ не нашёл широкого применения на практике. Его используют при переработке бедно-окисленных и самородных руд. Этот способ, в отличие от пирометаллургического, не позволяет извлекать попутно с медью драгоценные металлы.

Большую часть меди (85—90 %) производят пирометаллургическим способом из сульфидных руд. При этом параллельно решается задача извлечения из руд, помимо меди, других ценных сопутствующих металлов. Пирометаллургический способ производства меди предусматривает несколько стадий. Основные стадии этого производства включают:

  • подготовка руд (обогащение и иногда дополнительно обжиг);
  • плавка на штейн (выплавка медного штейна),
  • конвертирование штейна с получением черновой меди,
  • рафинирование черновой меди (сначала огневое, а затем электролитическое).


Производство алюминия

Электролизные ванны на норвежском алюминиевом заводе в городе Мушёэн компании Алкоа

Основным современным способом производства алюминия является электролитический способ, состоящий из двух стадий. Первая стадия — это получение глинозёма (Аl2O3) из рудного сырья и вторая — получение жидкого алюминия из глинозёма путём электролиза.

В мировой практике практически весь глинозём получают из бокситов в основном способом Байера[16], австрийского инженера, работавшего в России. На заводах в России глинозём получают двумя способами из разного типа руд. Из бокситов способом Байера и из бокситов и нефелинов способом спекания. Оба эти способа относятся к щелочным методам выделения глинозема из руд. Полученный глинозём в дальнейшем идёт в электролизное производство, которое предполагает получение алюминия путём электролиза глинозема, растворённого в расплавленном электролите. Основным компонентом электролита является криолит.

В чистом криолите Na3AlF6 (3NaF·AlF3) отношение NaF: AlF3 равно 3:1. Для экономии электроэнергии необходимо при электролизе иметь это отношение в пределах 2,6—2,8:1, поэтому к криолиту добавляют фтористый алюминий AlF3. Кроме того, для снижения температуры плавления в электролит добавляют немного CaF2, MgF2 и иногда NaCl. Содержание основных компонентов в промышленном электролите находится в следующих пропорциях: Na3AlF6 (75—90) %; AlF3 (5—12) %; MgF2 (2—5) %; CaF2 (2—4) %; Al203 (2—10) %. При повышении содержания Аl2О3 более 10 % резко повышается тугоплавкость электролита, при содержании менее 1,3 % нарушается нормальный режим электролиза.

Алюминий, извлекаемый из электролизных ванн, является алюминием-сырцом. Он содержит металлические (Fe, Si, Cu, Zn и др.) и неметаллические примеси, а также газы (водород, кислород, азот, оксиды углерода, сернистый газ). Неметаллические примеси — это механически увлеченные частицы глинозема, электролит, частицы футеровки и др. Для очистки от механически захваченных примесей, растворённых газов, а также от Na, Ca и Mg алюминий подвергают хлорированию.

Далее алюминий заливают в электрические печи-миксеры или в отражательные печи, где в течение 30—45 мин происходит его отстаивание. Цель этой операции — дополнительное очищение от неметаллических и газовых включений и усреднение состава путём смешения алюминия из разных ванн. Затем алюминий разливают на конвейерных разливочных машинах, получая алюминиевые чушки, либо на установках непрерывного литья в слитки для прокатки или волочения. Таким образом получают алюминий чистотой не менее 99,8 % Аl.


Производство других цветных металлов

Для производства других цветных металлов — свинца, олова, цинка, вольфрама и молибдена — пользуются некоторыми технологическими приемами, рассмотренными выше, но естественно, что схемы производства этих металлов и агрегаты для их получения имеют свои особенности.

 

Материал очень интересный. Открывает глаза на скрытые технологические процессы, благодаря которым появляется вся имеющаяся в распоряжении человечества техника. Без металлов, и следовательно металлургии, человечество погрузится в каменный век.

В посте выше я пропустил интересную часть - историю металлургии. Выложу ее потом, иначе текст становится слишком длинным.

Завтра постараюсь обобщить самое важное. (Если будет время)

Причина обращения: