Вы упускаете торговые возможности:
- Бесплатные приложения для трейдинга
- 8 000+ сигналов для копирования
- Экономические новости для анализа финансовых рынков
Регистрация
Вход
Вы принимаете политику сайта и условия использования
Если у вас нет учетной записи, зарегистрируйтесь
Сначала дается определение Классификации на уровне детского сада. Потом рассказывается о том, что порождается неопределенность(!?) А заканчивается как всегда : "Где ключ от квартиры где деньги лежат?"
Вам нужно повысить теоретическую подготовку. Учиться, учиться и еще раз ... Ну вы знаете.
И будьте скромнее.
ПС. Свое предложение разместите во Фриланс. Получите реальный продукт.
О ключе от квартиры слышал не в первый раз. Перечитайте мое предложение: "Детали модели, нормализации данных, и их выбора меня не интересуют. Меня интересуют результаты предсказаний ..." Причём предсказаний на прошлом участке истории от 2000 года по сегодня. Так что читать видимо мы тут все не умеем. Короче, теория продолжается. Перечитали другие книги и статьи и написали свою. Вы хоть попробуйте сначала поторговать на реальном рынке ипользуя свои методы, а потом пишите статьи. Ну ладно, теоретики-академики. Дал я вам тут рекламы немного, а то ветка начала тонуть в навале новых статей.
Вот ещё пара статей на данную тему:
http://robotwealth.com/machine-learning-financial-prediction-david-aronson/
http://robotwealth.com/machine-learning-for-financial-prediction-experimentation-with-david-aronsons-latest-work-part-2/
Возможно, кому-то покажется полезным.
Статья объёмная, спасибо за труд.
Однако, вызывает сомнение:
1. Использование стратификации с выбранной целевой, которая размечается на каждом баре. Перемешивание двух нерепрезентативных выборок обычно улучшают результат, что его искажает.
2. Отбор признаков на базе построенных моделей, особенно учитывая рандом первого сплита и метод жадности, - это скорей способ уменьшения признаков для метода построения моделей. Не всегда жадный метод оказывается правильным и устойчивым. Тут, возможно нужно использовать разные подвыборки, как минимум.
Второй метод не понял до конца - там так же случайный первый предиктор, а потом пытаемся построить лист или строится дерево и оставляется лучший лист, по которому и происходит оценка?