El fenómeno de San Petersburgo. Las paradojas de la teoría de la probabilidad. - página 11

 
Maxim Dmitrievsky:

Sí, especialmente cuando necesitas tener un montón de citas diferentes a mano y hacer pruebas rápidas, R y python te pondrán rápidamente en un charco sólo reiniciando scripts

+ R tiene un IDE nauseabundamente lento.

Ejecuta cualquier backtester cientos de veces en estos idiomas y luego cuélgate de pena.

No quiero ni mencionar los errores procedentes de librerías de terceros, las constantes incompatibilidades, etc.

Yo también tengo idiosincrasia con R. Cuando oigo hablar de R, quiero coger la pistola)).

Pero no hables de Python. Por mi propia experiencia: todo es muy rápido. Digamos que las consultas a SQLite no muy rápidas de 0,003 a 0,03 seg. Probar el TC para 55 mil líneas de historia lleva poco más de 2 minutos, incluyendo todo el material auxiliar de principio a fin.

 
Aleksey Nikolayev:

Casi no hay estadísticas en mql5. Y el que tenemos está, por decirlo suavemente, sin probar.

tal vez, no lo uso mucho ya que no veo el punto y no sé cómo hacerlo.

lo principal es la optimización y el encasillamiento empírico de la búsqueda, como en el hubra de nova

 
Yuriy Asaulenko:

R también me hace idiosincrasia. Cuando oigo hablar de R, me dan ganas de coger una pistola).

Pero no digas nada de Python. Por mi propia experiencia: todo es muy rápido. Digamos que las consultas a SQLite no muy rápidas de 0,003 a 0,03 seg. Probar el TC para 55 mil líneas de historia lleva poco más de 2 minutos, incluyendo todo el material auxiliar de principio a fin.

También tiene fallos, las salidas de los gráficos son lentas, por ejemplo. O puede que instales alguna librería, pero necesita otra librería, que ya tienes, pero necesita la misma, pero de una versión más antigua, y otras no funcionan... así que nuestro estudio se alargó demasiado.

así que nos llevó dos horas hacer nuestra investigación, no 10 minutos.

 
Maxim Dmitrievsky:

Sí, también tiene fallos, por ejemplo, muestra los gráficos lentamente. O instalas alguna librería, pero requiere la dependencia de otra librería, que ya tienes y c%#$ necesita la misma pero una versión más antigua, y otras no funcionan con la antigua...

así que tardamos dos horas en lugar de 10 minutos en hacer nuestra investigación.

Todavía no me lo he encontrado en Python, pero supongo que es posible. Esto también ha ocurrido con otros programas informáticos.

 
Maxim Dmitrievsky:

tal vez, no hago mucho uso de ella ya que no veo el punto y no sé cómo

Lo principal es la optimización y el encasillamiento empírico de la búsqueda, como en hobra de Nova

Para mí la regla principal (para la velocidad de ejecución y no colgar) - no debe haber bucles en R. Si es muy necesario un bucle y algo simple dentro de él - escriba la función en C (en R es bastante simple). Si no encaja, utilice C/C++ puro en lugar de R.

Pero si necesitas algo como la prueba de Kolmogorov-Smirnov, R es la mejor opción. Ahora estoy escribiendo un artículo para el foro, donde voy a tratar de mostrar la utilidad de tales métodos para el comercio.

 
Aleksey Nikolayev:

Pero si necesitas algo como la prueba de Kolmogorov-Smirnov, ..... Ahora estoy escribiendo un artículo para el foro, donde intentaré mostrar la utilidad de estos métodos para el trading.

¿Puedo hacerlo ahora, de forma abstracta? Si se trata de R, prefiero no hacerlo). Mejor sobre las ventajas de Kolmogorov-Smirnov para el comercio.

 
Aleksey Nikolayev:

Para mí la regla principal (para la velocidad de ejecución y la no congelación) - no debe haber bucles en R. Si realmente necesitamos un bucle y algo simple dentro de él - escribir la función en C (en R es bastante simple). Si no encaja, utilice C/C++ puro en lugar de R.

Pero si necesitas algo como la prueba de Kolmogorov-Smirnov, R es la mejor opción. Ahora estoy escribiendo un artículo para un foro en el que intentaré mostrar la utilidad de estos métodos para el trading.

Vale, interesante, vamos a leerlo.

 
Yuriy Asaulenko:

¿Puedo hacerlo ahora, de forma abstracta? Si se trata de R, mejor que no). Mejor sobre las ventajas de Kolmogorov-Smirnov para el comercio.

Construimos algunas estadísticas sobre las series de precios. Utilizando el criterio de concordancia comprobamos cuánto difiere su distribución de la que habría en caso de que los precios fueran paseos aleatorios. Si la diferencia es estadísticamente significativa, puede indicar la posibilidad de comercio. De los criterios de concordancia, Kolmogorov-Smirnov parece ser el más apropiado.

Además, este criterio (y muchos otros) sería muy útil en el hilo "De la teoría a la práctica")

 
Aleksey Nikolayev:

Construimos algunas estadísticas sobre las series de precios. Utilizando el criterio de concordancia comprobamos cuánto difiere su distribución de la que tendría si los precios fueran un paseo aleatorio. Si la diferencia es estadísticamente significativa, puede indicar la posibilidad de comercio. De los criterios de concordancia, Kolmogorov-Smirnov parece ser el más apropiado.

Además, este criterio (y muchos otros) sería muy útil en el hilo "De la teoría a la práctica")

La RV aleatoria puede tener absolutamente cualquier distribución. En la mayoría de las distribuciones, el comercio no es posible en absoluto o no tiene sentido.

Además, la negociación se realiza sobre una realización final concreta de un proceso aleatorio, que en sí no tiene nada que ver con una distribución. Ya que una distribución es una realización infinita o un conjunto de realizaciones SP.

Un buen ejemplo, la misma moneda, donde la ganancia/pérdida puede ser absolutamente cualquiera, con M=0.

Bueno, si se toma la PA no estacionaria, entonces hablar de distribuciones es hablar de nada.

 
Yuriy Asaulenko:

El BP aleatorio puede tener absolutamente cualquier distribución. En la mayoría de las distribuciones, el comercio no es posible en absoluto o no tiene sentido.

Además, la negociación se realiza sobre una realización particular de un proceso aleatorio, que en sí mismo no tiene nada que ver con la distribución. Dado que una distribución es una realización infinita o un conjunto de realizaciones CP.

Un buen ejemplo es la misma moneda, donde la ganancia/pérdida puede ser absolutamente cualquiera, con M=0.

Naturalmente, a partir de una única realización de un proceso aleatorio (nuestra serie de precios) no podemos establecer su forma exacta. Esta estadística sólo nos permitirá determinar la probabilidad de cometer un error, considerando que el proceso es diferente a un paseo aleatorio (un proceso de Wiener). Si esta probabilidad es menor que el umbral que establezcamos, asumimos que el proceso es distinto de un paseo aleatorio: este es el enfoque estándar de matstat. La diferencia con respecto a un paseo aleatorio nos interesa porque esta diferencia es una condición necesaria (aunque no suficiente) para la oportunidad de negociación.