[Archive!] Pure mathematics, physics, chemistry, etc.: brain-training problems not related to trade in any way - page 211

 

I'm stuck on TheXpert's problem (page 207 of the thread). I feel it's not hard to set a limit on the number of digits of the largest number (unlikely to be much more than 10).

In the mean time, here's the proof:

Prove that if n is odd, then 46^n + 296*13^n is divisible by 1947.

P.S. 1947 = 3*649.

 
Mathemat >>:

Что-то застрял я на задаче TheXpert'a (стр. 207 ветки). Чувствую, тут несложно установить предельное количество цифр самого большого числа (вряд ли намного больше 10).

Probably just the opposite :) -- I have that suspicion. I haven't looked at the answer yet -- I'm guessing that the maximal number is 1 less than some prime number.

Prove that if n is odd, then 46^n + 296*13^n is divisible by 1947.

Math. induction rules :) .

 
Mathemat >>:



Alexei, did you know that you can do complex calculations in your head without computers?

It turns out there are different kinds of multiplication:

. (point) - surface multiplication.

x (cross) - spatial multiplication

* (star) - spatio-temporal.

Video lessons on arithmetic

 
TheXpert >>:

Наверное как раз наоборот :) -- есть у меня такое подозрение. Ответ я пока не смотрел -- есть предположение что макс. кол-во на 1 меньше какого-то простого числа.

The further on, the fewer options are found for numbers that satisfy the conditions. After ten, assuming only zero, the real hitches begin.

Math. induction rules :) .

Too simple again, damn!

We'll see, thanks, Ilya.

 
Mathemat >>:

Чем дальше, тем меньше находится вариантов для цифр, удовлетворяющих условиям. После десятки, предполагающей только нуль, начинаются реальные затыки.

Yes. Just in case, I think it comes in handy -- the signs of divisibility.
 

Thanks, Andrew, but I hope I can somehow avoid this mess :)

OK, this one can be solved without induction:

Prove that you can always choose several (at least one) positive integers from n such that their sum is divisible by n.

P.S. Pardon, the problem is trivial.

P.P.S. No, it's non-trivial.

 
Mathemat >>:

Спасибо, Андрей, но все же надеюсь, что можно будет как-то обойтись без этой каши :)

It's from RSDN, and it's highly appreciated -- which means it can't be solved easily -- I spent most of my time on RSDN in the branch where such problems are asked :)

Prove that you can always choose several (at least one) positive integers from n such that their sum is divisible by n.

Yeah, it's more interesting :)

 
TheXpert >>:

Задачка с RSDN

in which case are you sure the problem can be solved analytically?

 

It is probably still analytically proving the existence of a maximal number. But how it is constructed is a dark matter. I don't want to get into all these mazes of divisibility... Besides it would be necessary to count the number of such numbers.

 
Mathemat >>:

Вероятно, все же аналитически доказывается существование максимального числа. А вот как оно конструируется - темный лес. Как-то не хочется лезть во все эти дебри признаков делимости... К тому же еще нужно будет и считать количество таких чисел.

Digging in slowly, too. Picked at twelve and shut up. For 11 digits max number = 98765456405. Divide by 12 with the next addition does not work.

In this connection I doubt, that process will shut up necessarily before prime number.

// I thought of making a program that would try to find all solutions, and the maximal one at that.

// But then I realized that the simple number will not work - the long will not hold more than fifteen decimal places.

// But assembling numbers from pieces is too boring... :))