Dmitriy Gizlyk
Dmitriy Gizlyk
4.4 (49)
  • Information
10+ Jahre
Erfahrung
0
Produkte
0
Demoversionen
134
Jobs
0
Signale
0
Abonnenten
Professional writing programs of any complexity for MT4, MT5, C#.
Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 51): Behavior-Guided Actor-Critic (BAC) veröffentlicht
Neuronale Netze leicht gemacht (Teil 51): Behavior-Guided Actor-Critic (BAC)

Die letzten beiden Artikel befassten sich mit dem Soft Actor-Critic-Algorithmus, der eine Entropie-Regularisierung in die Belohnungsfunktion integriert. Dieser Ansatz schafft ein Gleichgewicht zwischen Umwelterkundung und Modellnutzung, ist aber nur auf stochastische Modelle anwendbar. In diesem Artikel wird ein alternativer Ansatz vorgeschlagen, der sowohl auf stochastische als auch auf deterministische Modelle anwendbar ist.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 50): Soft Actor-Critic (Modelloptimierung) veröffentlicht
Neuronale Netze leicht gemacht (Teil 50): Soft Actor-Critic (Modelloptimierung)

Im vorigen Artikel haben wir den Algorithmus Soft Actor-Critic (Akteur-Kritiker) implementiert, konnten aber kein profitables Modell trainieren. Hier werden wir das zuvor erstellte Modell optimieren, um die gewünschten Ergebnisse zu erzielen.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 49): Soft Actor-Critic veröffentlicht
Neuronale Netze leicht gemacht (Teil 49): Soft Actor-Critic

Wir setzen unsere Diskussion über Algorithmen des Verstärkungslernens zur Lösung von Problemen im kontinuierlichen Aktionsraum fort. In diesem Artikel werde ich den Soft Actor-Critic (SAC) Algorithmus vorstellen. Der Hauptvorteil von SAC ist die Fähigkeit, optimale Strategien zu finden, die nicht nur die erwartete Belohnung maximieren, sondern auch eine maximale Entropie (Vielfalt) von Aktionen aufweisen.

JimReaper
JimReaper 2023.07.14
Enjoy!
Shah Yahya
Shah Yahya 2023.07.21
Thanks so much Dmitry! Really appreciate this.
Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 48): Methoden zur Verringerung der Überschätzung von Q-Funktionswerten veröffentlicht
Neuronale Netze leicht gemacht (Teil 48): Methoden zur Verringerung der Überschätzung von Q-Funktionswerten

Im vorigen Artikel haben wir die DDPG-Methode vorgestellt, mit der Modelle in einem kontinuierlichen Aktionsraum trainiert werden können. Wie andere Q-Learning-Methoden neigt jedoch auch DDPG dazu, die Werte der Q-Funktion zu überschätzen. Dieses Problem führt häufig dazu, dass ein Agent mit einer suboptimalen Strategie ausgebildet wird. In diesem Artikel werden wir uns einige Ansätze zur Überwindung des genannten Problems ansehen.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 47): Kontinuierlicher Aktionsraum veröffentlicht
Neuronale Netze leicht gemacht (Teil 47): Kontinuierlicher Aktionsraum

In diesem Artikel erweitern wir das Aufgabenspektrum unseres Agenten. Der Ausbildungsprozess wird einige Aspekte des Geld- und Risikomanagements umfassen, die ein wesentlicher Bestandteil jeder Handelsstrategie sind.

Tanaka Black
Tanaka Black 2023.06.29
hie Dimitriy, i have a job for you please check your message inbox
Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 46): Goal-conditioned reinforcement learning (GCRL, zielgerichtetes Verstärkungslernen) veröffentlicht
Neuronale Netze leicht gemacht (Teil 46): Goal-conditioned reinforcement learning (GCRL, zielgerichtetes Verstärkungslernen)

In diesem Artikel werfen wir einen Blick auf einen weiteren Ansatz des Reinforcement Learning. Es wird als Goal-conditioned reinforcement learning (GCRL, zielgerichtetes Verstärkungslernen) bezeichnet. Bei diesem Ansatz wird ein Agent darauf trainiert, verschiedene Ziele in bestimmten Szenarien zu erreichen.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 45): Training von Fertigkeiten zur Erkundung des Zustands veröffentlicht
Neuronale Netze leicht gemacht (Teil 45): Training von Fertigkeiten zur Erkundung des Zustands

Das Training nützlicher Fertigkeiten ohne explizite Belohnungsfunktion ist eine der größten Herausforderungen beim hierarchischen Verstärkungslernen. Zuvor haben wir bereits zwei Algorithmen zur Lösung dieses Problems kennengelernt. Die Frage nach der Vollständigkeit der Umweltforschung bleibt jedoch offen. In diesem Artikel wird ein anderer Ansatz für das Training von Fertigkeiten vorgestellt, dessen Anwendung direkt vom aktuellen Zustand des Systems abhängt.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 44): Erlernen von Fertigkeiten mit Blick auf die Dynamik veröffentlicht
Neuronale Netze leicht gemacht (Teil 44): Erlernen von Fertigkeiten mit Blick auf die Dynamik

Im vorangegangenen Artikel haben wir die DIAYN-Methode vorgestellt, die einen Algorithmus zum Erlernen einer Vielzahl von Fertigkeiten (skills) bietet. Die erworbenen Fertigkeiten können für verschiedene Aufgaben genutzt werden. Aber solche Fertigkeiten können ziemlich unberechenbar sein, was ihre Anwendung schwierig machen kann. In diesem Artikel wird ein Algorithmus zum Erlernen vorhersehbarer Fertigkeiten vorgestellt.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 43): Beherrschen von Fähigkeiten ohne Belohnungsfunktion veröffentlicht
Neuronale Netze leicht gemacht (Teil 43): Beherrschen von Fähigkeiten ohne Belohnungsfunktion

Das Problem des Verstärkungslernens liegt in der Notwendigkeit, eine Belohnungsfunktion zu definieren. Sie kann komplex oder schwer zu formalisieren sein. Um dieses Problem zu lösen, werden aktivitäts- und umweltbasierte Ansätze zum Erlernen von Fähigkeiten ohne explizite Belohnungsfunktion erforscht.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 42): Modell der Prokrastination, Ursachen und Lösungen veröffentlicht
Neuronale Netze leicht gemacht (Teil 42): Modell der Prokrastination, Ursachen und Lösungen

Im Kontext des Verstärkungslernens kann die Prokrastination (Zögern) eines Modells mehrere Ursachen haben. Der Artikel befasst sich mit einigen der möglichen Ursachen für Prokrastination bei Modellen und mit Methoden zu deren Überwindung.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 41): Hierarchische Modelle veröffentlicht
Neuronale Netze leicht gemacht (Teil 41): Hierarchische Modelle

Der Artikel beschreibt hierarchische Trainingsmodelle, die einen effektiven Ansatz für die Lösung komplexer maschineller Lernprobleme bieten. Hierarchische Modelle bestehen aus mehreren Ebenen, von denen jede für verschiedene Aspekte der Aufgabe zuständig ist.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 40): Verwendung von Go-Explore bei großen Datenmengen veröffentlicht
Neuronale Netze leicht gemacht (Teil 40): Verwendung von Go-Explore bei großen Datenmengen

In diesem Artikel wird die Verwendung des Go-Explore-Algorithmus über einen langen Trainingszeitraum erörtert, da die Strategie der zufälligen Aktionsauswahl mit zunehmender Trainingszeit möglicherweise nicht zu einem profitablen Durchgang führt.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 39): Go-Explore, ein anderer Ansatz zur Erkundung veröffentlicht
Neuronale Netze leicht gemacht (Teil 39): Go-Explore, ein anderer Ansatz zur Erkundung

Wir setzen die Untersuchung der Umgebung in Modellen des verstärkten Lernens fort. Und in diesem Artikel werden wir uns einen weiteren Algorithmus ansehen – Go-Explore. Er ermöglicht es Ihnen, die Umgebung in der Phase der Modellbildung effektiv zu erkunden.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 38): Selbstüberwachte Erkundung bei Unstimmigkeit (Self-Supervised Exploration via Disagreement) veröffentlicht
Neuronale Netze leicht gemacht (Teil 38): Selbstüberwachte Erkundung bei Unstimmigkeit (Self-Supervised Exploration via Disagreement)

Eines der Hauptprobleme beim Verstärkungslernen ist die Erkundung der Umgebung. Zuvor haben wir bereits die Forschungsmethode auf der Grundlage der intrinsischen Neugier kennengelernt. Heute schlage ich vor, einen anderen Algorithmus zu betrachten: Erkundung bei Unstimmigkeit.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 37): Sparse Attention (Verringerte Aufmerksamkeit) veröffentlicht
Neuronale Netze leicht gemacht (Teil 37): Sparse Attention (Verringerte Aufmerksamkeit)

Im vorigen Artikel haben wir relationale Modelle erörtert, die in ihrer Architektur Aufmerksamkeitsmechanismen verwenden. Eines der besonderen Merkmale dieser Modelle ist die intensive Nutzung von Computerressourcen. In diesem Artikel wird einer der Mechanismen zur Verringerung der Anzahl von Rechenoperationen innerhalb des Self-Attention-Blocks betrachtet. Dadurch wird die allgemeine Leistung des Modells erhöht.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 36): Relationales Verstärkungslernen veröffentlicht
Neuronale Netze leicht gemacht (Teil 36): Relationales Verstärkungslernen

In den Verstärkungslernmodellen, die wir im vorherigen Artikel besprochen haben, haben wir verschiedene Varianten von Faltungsnetzwerken verwendet, die in der Lage sind, verschiedene Objekte in den Originaldaten zu identifizieren. Der Hauptvorteil von Faltungsnetzen ist die Fähigkeit, Objekte unabhängig von ihrer Position zu erkennen. Gleichzeitig sind Faltungsnetzwerke nicht immer leistungsfähig, wenn es zu verschiedenen Verformungen von Objekten und Rauschen kommt. Dies sind die Probleme, die das relationale Modell lösen kann.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 35): Modul für intrinsische Neugier veröffentlicht
Neuronale Netze leicht gemacht (Teil 35): Modul für intrinsische Neugier

Wir untersuchen weiterhin Algorithmen für das verstärkte Lernen. Alle bisher betrachteten Algorithmen erfordern die Erstellung einer Belohnungspolitik, die es dem Agenten ermöglicht, jede seiner Aktionen bei jedem Übergang von einem Systemzustand in einen anderen zu bewerten. Dieser Ansatz ist jedoch ziemlich künstlich. In der Praxis gibt es eine gewisse Zeitspanne zwischen einer Handlung und einer Belohnung. In diesem Artikel werden wir einen Algorithmus zum Trainieren eines Modells kennenlernen, der mit verschiedenen Zeitverzögerungen zwischen Aktion und Belohnung arbeiten kann.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 34): Vollständig parametrisierte Quantilfunktion veröffentlicht
Neuronale Netze leicht gemacht (Teil 34): Vollständig parametrisierte Quantilfunktion

Wir untersuchen weiterhin verteilte Q-Learning-Algorithmen. In früheren Artikeln haben wir verteilte und Quantil-Q-Learning-Algorithmen besprochen. Im ersten Algorithmus haben wir die Wahrscheinlichkeiten für bestimmte Wertebereiche trainiert. Im zweiten Algorithmus haben wir Bereiche mit einer bestimmten Wahrscheinlichkeit trainiert. In beiden Fällen haben wir a priori Wissen über eine Verteilung verwendet und eine andere trainiert. In diesem Artikel wenden wir uns einem Algorithmus zu, der es dem Modell ermöglicht, für beide Verteilungen trainiert zu werden.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 33): Quantilsregression im verteilten Q-Learning veröffentlicht
Neuronale Netze leicht gemacht (Teil 33): Quantilsregression im verteilten Q-Learning

Wir setzen die Untersuchung des verteilten Q-Learnings fort. Heute wollen wir diesen Ansatz von der anderen Seite her betrachten. Wir werden die Möglichkeit prüfen, die Quantilsregression zur Lösung von Preisvorhersageaufgaben einzusetzen.

Dmitriy Gizlyk
Hat den Artikel Neuronale Netze leicht gemacht (Teil 32): Verteiltes Q-Learning veröffentlicht
Neuronale Netze leicht gemacht (Teil 32): Verteiltes Q-Learning

Wir haben die Q-Learning-Methode in einem der früheren Artikel dieser Serie kennengelernt. Bei dieser Methode werden die Belohnungen für jede Aktion gemittelt. Im Jahr 2017 wurden zwei Arbeiten vorgestellt, die einen größeren Erfolg bei der Untersuchung der Belohnungsverteilungsfunktion zeigen. Wir sollten die Möglichkeit in Betracht ziehen, diese Technologie zur Lösung unserer Probleme einzusetzen.

Abdulrahman F
Abdulrahman F 2023.01.20
Mm am hmm mm